Tag Archives: Eclipse

Brian Auten interviews Jay Richards about Christian apologetics

Recently, I picked up the audio book version of “The Privileged Planet”, which is a book by philosopher / economist Jay Richards and astronomer Guillermo Gonzalez. This book is different from books about the origin of the universe and cosmic fine-tuning. It talks about what it takes to make a habitable planet. And it talks about how the habitable places in the universe are also the best places to make scientific discoveries.

Christian scholar Jay Richards was interviewed by Brian Auten of Apologetics 315.

The MP3 file is here.

Topics:

  • What is intelligent design (ID)?
  • Is ID specifically Christian?
  • How does ID helpful to Christian apologetics?
  • What does ID prove?
  • Is it OK to use an argument that doesn’t prove Christianity specifically?
  • What is the difference between deism and theism?
  • Do ID arguments get you to deism or theism?
  • What is materialism, and how can you challenge it?
  • How do opponents of ID define ID?
  • What factors do you need to make a habitable planet?
  • Are habitable planets common or rare in the universe?
  • What is “The Privileged Planet” hypothesis?
  • Is there an overlap between habitability and suitability for making scientific discoveries?
  • What is the “Copernican Principle”?
  • Has the progress of science made Earth seem common and ordinary?
  • What is the most Earth-like planet that we’ve ever discovered?
  • How should ID proponents respond to the objection that creatures aren’t perfect?
  • Does having a big moon make a planet more or less habitable?
  • Does a planet’s distance to the Sun make that planet more or less habitable?
  • How do these two habitability factors affect the observability of solar eclipses?
  • What does co-relation between habitability and “discoverability” tell us about God?
  • How important is training in philosophy to Christian apologetics?
  • What one thing should a Christian apologist work on to be more effective?

If you’d like to learn more about his book “The Privileged Planet”, you can find out more here. I recently bought the audio book version of the book.

Are solar eclipses common? What has to be in place to observe a solar eclipse?

Christianity and the progress of science
Christianity and the progress of science

If there were a Designer of the universe, what would He have to do to allow creatures living on a planet to observe a solar eclipse?

Consider this article from Discovery Institute.

Excerpt:

A rare convergence of events allows Earthlings to witness not just solar eclipses, but perfect solar eclipses, where the Moon just barely covers the Sun’s bright photosphere. Such eclipses depend on the precise sizes, shapes, and relative distances of the Sun, Moon, and Earth. There’s no law of physics or celestial mechanics that requires the right configuration. In fact, of the more than 65 major moons in our Solar System, ours best matches the Sun as viewed from its planet’s surface, and this is only possible during a fairly narrow window of Earth’s history encompassing the present. The Moon is about 400 times smaller than the Sun. But right now, the Moon is about 400 times closer to the Earth than is the Sun. So, the Moon’s apparent size on the sky matches the Sun’s. Astronomers have noted this odd coincidence for centuries. And, since the Sun appears larger from the Earth than from any other planet with a moon, an Earth-bound observer can discern finer details in the Sun’s chromosphere and corona than from any other planet. This makes our solar eclipses more valuable scientifically.

The recent pictures of solar eclipses sent back from the Opportunity rover on Mars nicely illustrate how much better our solar eclipses are. The two small potato-shaped Martian moons, Deimos and Phobos, appear much too small to cover the Sun’s disk, and they zip across it in less than a minute.

Not only do you need things to be finely-tuned to see the eclipse, but you also need observers to be there.

More:

It’s intriguing that the best place to view total solar eclipses in our Solar System is the one time and place where there are observers to see them. It turns out that the precise configuration of Earth, Moon and Sun are also vital to sustaining life on Earth. A moon large enough to cover the Sun stabilizes the tilt of the rotation axis of its host planet, yielding a more stable climate, which is necessary for complex life. The Moon also contributes to Earth’s ocean tides, which increase the vital mixing of nutrients from the land to the oceans. The two moons around Mars are much too small to stabilize its rotation axis.

In addition, it’s only in the so-called Circumstellar Habitable Zone of our Sun–that cozy life friendly ring where water can stay liquid on a planet’s surface–that the Sun appears to be about the same size as the Moon from Earth’s surface. As a result, we enjoy perfect solar eclipses.

Why would the Designer of the Universe want his observers to exist in exactly the right place to observe the solar eclipse? What is the point of seeing a solar eclipse?

Here is the point:

Our ability to observe perfect solar eclipses has figured prominently in several important scientific discoveries, discoveries that would have been difficult if not impossible on the much more common planets that don’t enjoy such eclipses.

First, these observations helped disclose the nature of stars. Scientists since Isaac Newton (1666) had known that sunlight splits into all the colors of the rainbow when passed through a prism. But only in the 19th century did astronomers observe solar eclipses with spectroscopes, which use prisms. The combination of the man-made spectroscope with the natural experiment provided by eclipses gave astronomers the tools they needed not only to discover how the Sun’s spectrum is produced, but the nature of the Sun itself. This knowledge enabled astronomers to interpret the spectra of the distant stars. So, in a sense, perfect eclipses were a key that unlocked the field of astrophysics.

Second, in 1919, perfect solar eclipses allowed two teams of astronomers, one led by Sir Arthur Eddington, to confirm a prediction of Einstein’s General Theory of Relativity–that gravity bends light. They succeeded in measuring the changes in the positions of starlight passing near the Sun’s edge compared to their positions months later. Such a test was most feasible during a perfect solar eclipse. The tests led to the general acceptance of Einstein’s theory, which is the foundation of modern cosmology.

So, you’ve got fine-tuning for the eclipse, fine-tuning for the observers, and with that in place, the observers can collect scientific evidence… including evidence that confirms cosmic fine-tuning as well as general relativity. General relativity is important because if gives us the expanding universe – one of the evidences for the Big Bang cosmology. The Big Bang cosmology states that the entire physical universe came into being out of nothing, about 14 billion years ago. Who could have caused that? If we don’t have eclipses, we are losing out on evidence of cosmic fine-tuning and cosmic creation.

There’s a new Discovery Institute podcast featuring Jay Richards, co-author of the amazing book “The Privileged Planet”.

Details:

On this episode of ID: The Future, CSC Senior Fellow Jay Richards explains how perfect solar eclipses are the tip of an iceberg-size design argument found in a book he co-wrote, The Privileged Planet. The conditions for a habitable planet (right distance from the right size star, a big but not too big moon that is the right distance away to stabilize Earth’s tilt and circulate its oceans) are also conditions that make perfect solar eclipses from the Earth’s surface much more likely. And perfect eclipses aren’t just eerie and beautiful. They’ve helped scientists test and discover things, and are part of a larger pattern: The conditions needed for a habitable place in the cosmos correlate with the conditions well suited for scientific discovery. As Richards notes, this correlation is inexplicable if the cosmos is the product of chance. But if it’s intelligently designed with creatures like us in mind, it’s just what we might expect.

The MP3 file is here.

If you have not seen The Privileged Planet, you can get the same argument as in the book in just over an hour. You can either buy The Privileged Planet DVD, or click here to watch it on YouTube. And it’s narrated by John-Rhys Davies.

Convergence detected in the genetic structure of bats and dolphins

Apologetics and the progress of science
Apologetics and the progress of science

We have to start this post with the definition of convergence in biology.

In evolutionary biology, convergent evolution is the process whereby organisms not closely related (not monophyletic), independently evolve similar traits as a result of having to adapt to similar environments or ecological niches.

It is the opposite of divergent evolution, where related species evolve different traits.

On a molecular level, this can happen due to random mutation unrelated to adaptive changes; see long branch attraction. In cultural evolution, convergent evolution is the development of similar cultural adaptations to similar environmental conditions by different peoples with different ancestral cultures. An example of convergent evolution is the similar nature of the flight/wings of insects, birds, pterosaurs, and bats.

All four serve the same function and are similar in structure, but each evolved independently.

Jonathan Wells explains the problem that convergence poses for naturalistic evolution:

Human designers reuse designs that work well. Life forms also reuse certain structures (the camera eye, for example, appears in humans and octopuses). How well does this evidence support Darwinian evolution? Does it support intelligent design more strongly?

Evolutionary biologists attribute similar biological structures to either common descent or convergence. Structures are said to result from convergence if they evolved independently from distinct lines of organisms. Darwinian explanations of convergence strain credulity because they must account for how trial-and-error tinkering (natural selection acting on random variations) could produce strikingly similar structures in widely different organisms and environments. It’s one thing for evolution to explain similarity by common descent—the same structure is then just carried along in different lineages. It’s another to explain it as the result of blind tinkering that happened to hit on the same structure multiple times. Design proponents attribute such similar structures to common design (just as an engineer may use the same parts in different machines). If human designers frequently reuse successful designs, the designer of nature can surely do the same.

I’m a software engineer, and we re-use components all the time for different programs that have no “common ancestor”. E.g. – I can develop my String function library and use it in my web application and my Eclipse IDE plug-in, and those two Java programs have nothing in common. So you find the same bits in two different programs because I am the developer of both programs. But the two programs don’t extend from a common program that was used for some other purpose – they have no “common ancestor” program.

Now with that in mind, take a look at this recent article from Science Daily, which Mysterious Micah sent me.

Excerpt:

The evolution of similar traits in different species, a process known as convergent evolution, is widespread not only at the physical level, but also at the genetic level, according to new research led by scientists at Queen Mary University of London and published in Nature this week.

The scientists investigated the genomic basis for echolocation, one of the most well-known examples of convergent evolution to examine the frequency of the process at a genomic level.

Echolocation is a complex physical trait that involves the production, reception and auditory processing of ultrasonic pulses for detecting unseen obstacles or tracking down prey, and has evolved separately in different groups of bats and cetaceans (including dolphins).

The scientists carried out one of the largest genome-wide surveys of its type to discover the extent to which convergent evolution of a physical feature involves the same genes.

They compared genomic sequences of 22 mammals, including the genomes of bats and dolphins, which independently evolved echolocation, and found genetic signatures consistent with convergence in nearly 200 different genomic regions concentrated in several ‘hearing genes’.

[…]Consistent with an involvement in echolocation, signs of convergence among bats and the bottlenose dolphin were seen in many genes previously implicated in hearing or deafness.

“We had expected to find identical changes in maybe a dozen or so genes but to see nearly 200 is incredible,” explains Dr Joe Parker, from Queen Mary’s School of Biological and Chemical Sciences and first author on the paper.

“We know natural selection is a potent driver of gene sequence evolution, but identifying so many examples where it produces nearly identical results in the genetic sequences of totally unrelated animals is astonishing.”

Nature is the most prestigious peer-reviewed science journal. This is solid material.

There is an earlier article from 2010 in New Scientist that talked about one of the previous genes that matched for hearing capability.

Excerpt:

Bats and dolphins trod an identical genetic path to evolve a vital component of the complex sonar systems they use to pursue and catch prey.

The finding is unusual, because although many creatures have independently evolved characteristics such as eyes, tusks or wings, they usually took diverse genetic routes to get there.

Analysis of a specific gene has now demonstrated that although bats live in air and dolphins in water, where sound travels five times faster, they independently evolved a near-identical gene that allows them to accept high-frequency sound in the ear – vital for sonar.

The gene makes prestin, a protein in hair cells of the cochlea, which is the organ in the inner ear where sonar signals are accepted and amplified. Prestin changes shape when exposed to high-frequency sound, and this in turn deforms the fine hair cells, setting off an electrical impulse to the brain. So the protein has the important jobs of detecting and selecting high-frequency sounds for amplification.

When researchers examined the molecular structure of the prestin gene from a range of animals, they found that the variants in echolocating bats and dolphins were virtually indistinguishable.

Indistinguishable genes in animals that don’t share a common ancestor? Maybe a better explanation for the evidence we have is – common designer.