Tag Archives: Progress of Science

Are solar eclipses common? What has to be in place to observe a solar eclipse?

Christianity and the progress of science
Christianity and the progress of science

If there were a Designer of the universe, what would He have to do to allow creatures living on a planet to observe a solar eclipse?

Consider this article from Discovery Institute.

Excerpt:

A rare convergence of events allows Earthlings to witness not just solar eclipses, but perfect solar eclipses, where the Moon just barely covers the Sun’s bright photosphere. Such eclipses depend on the precise sizes, shapes, and relative distances of the Sun, Moon, and Earth. There’s no law of physics or celestial mechanics that requires the right configuration. In fact, of the more than 65 major moons in our Solar System, ours best matches the Sun as viewed from its planet’s surface, and this is only possible during a fairly narrow window of Earth’s history encompassing the present. The Moon is about 400 times smaller than the Sun. But right now, the Moon is about 400 times closer to the Earth than is the Sun. So, the Moon’s apparent size on the sky matches the Sun’s. Astronomers have noted this odd coincidence for centuries. And, since the Sun appears larger from the Earth than from any other planet with a moon, an Earth-bound observer can discern finer details in the Sun’s chromosphere and corona than from any other planet. This makes our solar eclipses more valuable scientifically.

The recent pictures of solar eclipses sent back from the Opportunity rover on Mars nicely illustrate how much better our solar eclipses are. The two small potato-shaped Martian moons, Deimos and Phobos, appear much too small to cover the Sun’s disk, and they zip across it in less than a minute.

Not only do you need things to be finely-tuned to see the eclipse, but you also need observers to be there.

More:

It’s intriguing that the best place to view total solar eclipses in our Solar System is the one time and place where there are observers to see them. It turns out that the precise configuration of Earth, Moon and Sun are also vital to sustaining life on Earth. A moon large enough to cover the Sun stabilizes the tilt of the rotation axis of its host planet, yielding a more stable climate, which is necessary for complex life. The Moon also contributes to Earth’s ocean tides, which increase the vital mixing of nutrients from the land to the oceans. The two moons around Mars are much too small to stabilize its rotation axis.

In addition, it’s only in the so-called Circumstellar Habitable Zone of our Sun–that cozy life friendly ring where water can stay liquid on a planet’s surface–that the Sun appears to be about the same size as the Moon from Earth’s surface. As a result, we enjoy perfect solar eclipses.

Why would the Designer of the Universe want his observers to exist in exactly the right place to observe the solar eclipse? What is the point of seeing a solar eclipse?

Here is the point:

Our ability to observe perfect solar eclipses has figured prominently in several important scientific discoveries, discoveries that would have been difficult if not impossible on the much more common planets that don’t enjoy such eclipses.

First, these observations helped disclose the nature of stars. Scientists since Isaac Newton (1666) had known that sunlight splits into all the colors of the rainbow when passed through a prism. But only in the 19th century did astronomers observe solar eclipses with spectroscopes, which use prisms. The combination of the man-made spectroscope with the natural experiment provided by eclipses gave astronomers the tools they needed not only to discover how the Sun’s spectrum is produced, but the nature of the Sun itself. This knowledge enabled astronomers to interpret the spectra of the distant stars. So, in a sense, perfect eclipses were a key that unlocked the field of astrophysics.

Second, in 1919, perfect solar eclipses allowed two teams of astronomers, one led by Sir Arthur Eddington, to confirm a prediction of Einstein’s General Theory of Relativity–that gravity bends light. They succeeded in measuring the changes in the positions of starlight passing near the Sun’s edge compared to their positions months later. Such a test was most feasible during a perfect solar eclipse. The tests led to the general acceptance of Einstein’s theory, which is the foundation of modern cosmology.

So, you’ve got fine-tuning for the eclipse, fine-tuning for the observers, and with that in place, the observers can collect scientific evidence… including evidence that confirms cosmic fine-tuning as well as general relativity. General relativity is important because if gives us the expanding universe – one of the evidences for the Big Bang cosmology. The Big Bang cosmology states that the entire physical universe came into being out of nothing, about 14 billion years ago. Who could have caused that? If we don’t have eclipses, we are losing out on evidence of cosmic fine-tuning and cosmic creation.

There’s a new Discovery Institute podcast featuring Jay Richards, co-author of the amazing book “The Privileged Planet”.

Details:

On this episode of ID: The Future, CSC Senior Fellow Jay Richards explains how perfect solar eclipses are the tip of an iceberg-size design argument found in a book he co-wrote, The Privileged Planet. The conditions for a habitable planet (right distance from the right size star, a big but not too big moon that is the right distance away to stabilize Earth’s tilt and circulate its oceans) are also conditions that make perfect solar eclipses from the Earth’s surface much more likely. And perfect eclipses aren’t just eerie and beautiful. They’ve helped scientists test and discover things, and are part of a larger pattern: The conditions needed for a habitable place in the cosmos correlate with the conditions well suited for scientific discovery. As Richards notes, this correlation is inexplicable if the cosmos is the product of chance. But if it’s intelligently designed with creatures like us in mind, it’s just what we might expect.

The MP3 file is here.

If you have not seen The Privileged Planet, you can get the same argument as in the book in just over an hour. You can either buy The Privileged Planet DVD, or click here to watch it on YouTube. And it’s narrated by John-Rhys Davies.

MIT physicist Alan Lightman on fine-tuning and the multiverse

Christianity and the progress of science
Christianity and the progress of science

Here’s the article from Harper’s magazine.

The MIT physicist says that the fine-tuning is real, and is best explained by positing the existence of an infinite number of universes that are not fine-tuned – the so-called multiverse.

Excerpt:

While challenging the Platonic dream of theoretical physicists, the multiverse idea does explain one aspect of our universe that has unsettled some scientists for years: according to various calculations, if the values of some of the fundamental parameters of our universe were a little larger or a little smaller, life could not have arisen. For example, if the nuclear force were a few percentage points stronger than it actually is, then all the hydrogen atoms in the infant universe would have fused with other hydrogen atoms to make helium, and there would be no hydrogen left. No hydrogen means no water. Although we are far from certain about what conditions are necessary for life, most biologists believe that water is necessary. On the other hand, if the nuclear force were substantially weaker than what it actually is, then the complex atoms needed for biology could not hold together. As another example, if the relationship between the strengths of the gravitational force and the electromagnetic force were not close to what it is, then the cosmos would not harbor any stars that explode and spew out life-supporting chemical elements into space or any other stars that form planets. Both kinds of stars are required for the emergence of life. The strengths of the basic forces and certain other fundamental parameters in our universe appear to be “fine-tuned” to allow the existence of life. The recognition of this fine-­tuning led British physicist Brandon Carter to articulate what he called the anthropic principle, which states that the universe must have the parameters it does because we are here to observe it. Actually, the word anthropic, from the Greek for “man,” is a misnomer: if these fundamental parameters were much different from what they are, it is not only human beings who would not exist. No life of any kind would exist.

If such conclusions are correct, the great question, of course, is why these fundamental parameters happen to lie within the range needed for life. Does the universe care about life? Intelligent design is one answer. Indeed, a fair number of theologians, philosophers, and even some scientists have used fine-tuning and the anthropic principle as evidence of the existence of God. For example, at the 2011 Christian Scholars’ Conference at Pepperdine University, Francis Collins, a leading geneticist and director of the National Institutes of Health, said, “To get our universe, with all of its potential for complexities or any kind of potential for any kind of life-form, everything has to be precisely defined on this knife edge of improbability…. [Y]ou have to see the hands of a creator who set the parameters to be just so because the creator was interested in something a little more complicated than random particles.”

Intelligent design, however, is an answer to fine-tuning that does not appeal to most scientists. The multiverse offers another explanation. If there are countless different universes with different properties—for example, some with nuclear forces much stronger than in our universe and some with nuclear forces much weaker—then some of those universes will allow the emergence of life and some will not. Some of those universes will be dead, lifeless hulks of matter and energy, and others will permit the emergence of cells, plants and animals, minds. From the huge range of possible universes predicted by the theories, the fraction of universes with life is undoubtedly small. But that doesn’t matter. We live in one of the universes that permits life because otherwise we wouldn’t be here to ask the question.

I thought I was going to have to go outside this article to refute the multiverse, but Lightman is honest enough to refute it himself:

The… conjecture that there are many other worlds… [T]here is no way they can prove this conjecture. That same uncertainty disturbs many physicists who are adjusting to the idea of the multiverse. Not only must we accept that basic properties of our universe are accidental and uncalculable. In addition, we must believe in the existence of many other universes. But we have no conceivable way of observing these other universes and cannot prove their existence. Thus, to explain what we see in the world and in our mental deductions, we must believe in what we cannot prove.

Sound familiar? Theologians are accustomed to taking some beliefs on faith. Scientists are not. All we can do is hope that the same theories that predict the multiverse also produce many other predictions that we can test here in our own universe. But the other universes themselves will almost certainly remain a conjecture.

The multiverse is not pure nonsense, it is theoretically possible. The problem is that the multiverse generator itself would require fine-tuning, so the multiverse doesn’t get rid of the problem. And, as Lightman indicates, we have no independent experimental evidence for the existence of the multiverse in any case. Atheists just have to take it on faith, and hope that their speculations will be proved right. Meanwhile, the fine-tuning is just as easily explained by postulating God, and we have independent evidence for God’s existence, like the the origin of biological information, the sudden appearance of animal body plans, the argument from consciousness, and so on. Even if the naturalists could explain the fine-tuning, they would still have a lot of explaining to do. Theism (intelligent causation) is the simplest explanation for all of the things we learn from the progress of science.

We need to be frank about atheists and their objections to the progress of science. Within the last 100 years, we have discovered that the physical universe came into being out of nothing 15 billion years ago, and we have discovered that this one universe is fine-tuned for intelligent life. I don’t think it’s like that the last 100 years of scientific progress on the origins question are going to be overturned so that science once again affirms what atheists believe about the universe. Things are going the wrong way for atheists – at least with respect to science.

See it in action

To see these arguments examined in a debate with a famous atheist, simply watch the debate between William Lane Craig and Christopher Hitchens, and judge which debater is willing to form his beliefs on scientific progress, and which debater is forming his beliefs against the science we have today, and hoping that the good science we have today based on experiments will be overturned by speculative theories at some point in the future. When you watch that debate, it becomes very clear that Christian theists are interested in conforming their beliefs to science, and atheists are very interested in speculating against what science has shown in order to maintain their current pre-scientific view. That’s not what rational people ought to do when confronted with evidence.

Positive arguments for Christian theism

William Lane Craig lectures on naturalism at the University of St. Andrews

Lets take a closer look at a puzzle
Lets take a closer look at a puzzle

Note: even if you have heard Dr. Craig’s arguments before, I recommend jumping to the 48 minutes of Q&A time, which starts 72 minutes in.

About Dr. William Lane Craig:

William Lane Craig (born August 23, 1949) is an American analytic philosopher, philosophical theologian, and Christian apologist. He is known for his work on the philosophy of time and the philosophy of religion, specifically the existence of God and the defense of Christian theism. He has authored or edited over 30 books including The Kalam Cosmological Argument (1979), Theism, Atheism and Big Bang Cosmology(co-authored with Quentin Smith, 1993), Time and Eternity: Exploring God’s Relationship to Time (2001), and Einstein, Relativity and Absolute Simultaneity (co-edited with Quentin Smith, 2007).

Craig received a Bachelor of Arts degree in communications from Wheaton College, Illinois, in 1971 and two summa cum laudemaster’s degrees from Trinity Evangelical Divinity School in Deerfield, Illinois, in 1975, in philosophy of religion and ecclesiastical history. He earned a Ph.D. in philosophy under John Hick at the University of Birmingham, England in 1977 and a Th.D. underWolfhart Pannenberg at the University of Munich, Germany in 1984.

Dr. Craig was in Scotland to lecture at a physics conference, but a local church organized this public lecture at the University of St. Andrews.

Here is the full lecture with Q&A: (2 hours)

Summary:

  • Naturalism defined: the physical world (matter, space and time) is all that exists
  • Dr. Craig will present 7 reasons why naturalism is false
  • 1) the contingency argument
  • 2) the kalam cosmological argument
  • 3) the fine-tuning of the universe for intelligent life
  • 4) the moral argument
  • 5) the ontological argument
  • 6) the resurrection of Jesus
  • 7) religious experience

Dr. Craig does mention an 8th argument early in the Q&A – the argument from the non-physicality of mental states (substance dualism), which is an argument that I find convincing, because a materialist conception of mind is not compatible with rationality, consciousness and moral agency.

Questions and Answers

He gets a couple of questions on the moral argument early on – one of them tries to put forward an evolutionary explanation for “moral” behaviors. There’s another question the definition of naturalism. There is a bonehead question about the non-existence of Jesus based on a Youtube movie he saw – which Craig responds to with agnostic historian Bart Ehrman’s book on that topic. There’s a question about God as the ground for morality – does morality come from his will or nature.

Then there is a question about the multiverse, which came up at the physics conference Dr. Craig attended the day before. There is a good question about the Big Bang theory and the initial singularity at time t=0. Another good question about transfinite arithmetic, cardinality and set theory. One questioner asks about the resurrection argument. The questioner asks if we can use the origin of the disciples belief as an argument when other religions have people who are willing to die for their claims. One of the questioners asks about whether the laws of nature break down at 10^-43 after the beginning of the universe. There is a question about the religious experience argument, and Craig has the opportunity to give his testimony.

I thought that the questions from the Scottish students and faculty were a lot more thoughtful and respectful than at American colleges and universities. Highly recommended.

John C. Sanford’s genetic entropy hypothesis

Christianity and the progress of science
Christianity and the progress of science

JoeCoder sent me a recent peer-reviewed paper by John C. Sanford, so I’ve been trying to find something written by him at a layman’s level so I could understand what he is talking about.

Dr. Sanford’s CV is posted at the Cornell University web page.

I found this 20-minute video of an interview with him, in which he explains his thesis:

The most important part of that video is Sanford’s assertion that natural selection cannot remove deleterious mutations from a population faster than they arrive.

And I also found a review of a book that he wrote that explains his ideas at the layman level.

It says:

Dr. John Sanford is a plant geneticist and inventor who conducted research at Cornell University for more than 25 years. He is best known for significant contributions to the field of transgenic crops, including the invention of the biolistic process (“gene gun”).

[…]Sanford argues that, based upon modern scientific evidence and the calculations of population geneticists (who are almost exclusively evolutionists), mutations are occurring at an alarmingly high rate in our genome and that the vast majority of all mutations are either harmful or “nearly-neutral” (meaning a loss for the organism or having no discernible fitness gain). Importantly, Sanford also establishes the extreme rarity of any type of beneficial mutations in comparison with harmful or “nearly-neutral” mutations. Indeed, “beneficial” mutations are so exceedingly rare as to not contribute in any meaningful way. [NOTE: “Beneficial” mutations do not necessarily result from a gain in information, but instead, these changes predominantly involve a net loss of function to the organism, which is also not helpful to [Darwinism]; see Behe, 2010, pp. 419-445.] Sanford concludes that the frequency and generally harmful or neutral nature of mutations prevents them from being useful to any scheme of random evolution.

[…]In the next section of the book, Sanford examines natural selection and asks whether “nature” can “select” in favor of the exceedingly rare “beneficial” mutations and against the deleterious mutations. The concept of natural selection is generally that the organisms that are best adapted to their environment will survive and reproduce, while the less fit will not. Sanford points out that this may be the case with some organisms, but more commonly, selection involves chance and luck. But could this process select against harmful mutations and allow less harmful or even beneficial mutations to thrive? According to Sanford, there are significant challenges to this notion.

Stanford is a co-author of an academic book on these issues that has Dembski and Behe as co-authors.

Now, I do have to post something more complicated about this, which you can skip – it’s an abstract of a paper he co-authored from that book:

Most deleterious mutations have very slight effects on total fitness, and it has become clear that below a certain fitness effect threshold, such low-impact mutations fail to respond to natural selection. The existence of such a selection threshold suggests that many low-impact deleterious mutations should accumulate continuously, resulting in relentless erosion of genetic information. In this paper, we use numerical simulation to examine this problem of selection threshold.

The objective of this research was to investigate the effect of various biological factors individually and jointly on mutation accumulation in a model human population. For this purpose, we used a recently-developed, biologically-realistic numerical simulation program, Mendel’s Accountant. This program introduces new mutations into the population every generation and tracks each mutation through the processes of recombination, gamete formation, mating, and transmission to the new offspring. This method tracks which individuals survive to reproduce after selection, and records the transmission of each surviving mutation every generation. This allows a detailed mechanistic accounting of each mutation that enters and leaves the population over the course of many generations. We term this type of analysis genetic accounting.

Across all reasonable parameters settings, we observed that high impact mutations were selected away with very high efficiency, while very low impact mutations accumulated just as if there was no selection operating. There was always a large transitional zone, wherein mutations with intermediate fitness effects accumulated continuously, but at a lower rate than would occur in the absence of selection. To characterize the accumulation of mutations of different fitness effect we developed a new statistic, selection threshold (STd), which is an empirically determined value for a given population. A population’s selection threshold is defined as that fitness effect wherein deleterious mutations are accumulating at exactly half the rate expected in the absence of selection. This threshold is mid-way between entirely selectable, and entirely unselectable, mutation effects.

Our investigations reveal that under a very wide range of parameter values, selection thresholds for deleterious mutations are surprisingly high. Our analyses of the selection threshold problem indicate that given even modest levels of noise affecting either the genotype-phenotype relationship or the genotypic fitness-survival-reproduction relationship, accumulation of low-impact mutations continually degrades fitness, and this degradation is far more serious than has been previously acknowledged. Simulations based on recently published values for mutation rate and effect-distribution in humans show a steady decline in fitness that is not even halted by extremely intense selection pressure (12 offspring per female, 10 selectively removed). Indeed, we find that under most realistic circumstances, the large majority of harmful mutations are essentially unaffected by natural selection and continue to accumulate unhindered. This finding has major theoretical implications and raises the question, “What mechanism can preserve the many low-impact nucleotide positions that constitute most of the information within a genome?”

Now I have been told by JoeCoder that there are many critical responses to his hypothesis, most of which have to do with whether natural selection can overcome the difficulty he is laying out. But since this is not my area of expertise, there is not much I can say to adjudicate here. Take it for what it is.

Positive arguments for Christian theism

William Lane Craig debates Austin Dacey: Does God Exist?

Two tough rams butt heads, and may the best ram win!
Two tough rams butt heads, and may the best ram win!

Here is the video and summary of a debate between Christian theist William Lane Craig and Austin Dacey at Purdue University in 2004 about the existence of God.

The debaters:

The video: (2 hours)

The video shows the speakers and powerpoint slides of their arguments. Austin Dacey is one of the top atheist debaters, and I would put him second to Peter Millican alone, with Walter Sinnott-Armstrong in third place. This is the debate to show people who are new to apologetics. The debate with Peter Millican is better for advanced students, and that’s no surprise since he teaches at Oxford University and is familiar with all of Dr. Craig’s work. The Craig-Dacey debate is the one that I give to my co-workers.

By the way, you can get the DVDs and CDs for the first Craig-Dacey debate and the second Craig-Dacey debate and the second Craig-Sinnott-Armstrong debate. The Peter Millican debate is not available on DVD, but the link above (Peter Millican) has the video and my summary.

Dr. Dacey’s 5 arguments below are all good arguments that you find in the academic literature. He is also an effective and engaging speaker, This is a great debate to watch!

SUMMARY of the opening speeches:

Dr. Craig’s opening statement:

Dr. Craig will present six reasons why God exists:

  1. (Contingency argument) God is the best explanation of why something exists rather than nothing
  2. (Cosmological argument)  God’s existence is implied by the origin of the universe
  3. (Fine-tuning argument) The fine-tuning of the universe for intelligent life points to a designer of the cosmos
  4. (Moral argument) God is the best explanation for the existence of objective moral values and objective moral duties
  5. (Miracles argument) The historical facts surrounding the life, death and resurrection of Jesus
  6. (Religious experience) God’s existence is directly knowable even apart from arguments

Dr. Dacey’s opening argument:

There are two ways to disprove God’s existence, by showing that the concept of God is self-contradictory, or by showing that certain facts about ourselves and the world are incompatible with what we would expect to be true if God did exist. Dr. Dacey will focus on the second kind of argument.

  1. The hiddenness of God
  2. The success of science in explaining nature without needing a supernatural agency
  3. The dependence of mind on physical processes in the brain
  4. Naturalistic evolution
  5. The existence of gratuitous / pointless evil and suffering

One final point:

One thing that I have to point out is that Dr. Dacey quotes Brian Greene during the debate to counter Dr. Craig’s cosmological argument. Dr. Craig could not respond because he can’t see the context of the quote. However, Dr. Craig had a rematch with Dr. Dacey where was able to read the context of the quote and defuse Dr. Dacey’s objection. This is what he wrote in his August 2005 newsletter after the re-match:

The following week, I was off an another three-day trip, this time to California State University at Fresno. As part of a week of campus outreach the Veritas Forum scheduled a debate on the existence of God between me and Austin Dacey, whom I had debated last spring at Purdue University. In preparation for the rematch I adopted two strategies: (1) Since Dacey had come to the Purdue debate with prepared speeches, I decided to throw him for a loop by offering a different set of arguments for God, so that his canned objections wouldn’t apply. I chose to focus on the cosmological argument, giving four separate arguments for the beginning of the universe, and on the evidence for Jesus’ resurrection. (2) I reviewed our previous debate carefully, preparing critiques of his five atheistic arguments. In the process I found that he had seriously misunderstood or misrepresented a statement by a scientist on the Big Bang; so I brought along the book itself in case Dacey quoted this source again. I figured he might change his arguments just as I was doing; but I wanted to be ready in case he used his old arguments again.

[…]The auditorium was packed that night for the debate, and I later learned that there were overflow rooms, too. To my surprise Dr. Dacey gave the very same case he had presented at Purdue; so he really got clobbered on those arguments. Because he wasn’t prepared for my new arguments, he didn’t even respond to two of my arguments for the beginning of the universe, though he did a credible job responding to the others. I was pleased when he attacked the Big Bang by quoting the same scientist as before, because I then held up the book, specified the page number, and proceeded to quote the context to show what the scientist really meant.

Dr. Craig is always prepared!