Tag Archives: Victor Stenger

Brian Auten interviews philosopher Robin Collins on the fine-tuning argument

Christianity and the progress of science
Christianity and the progress of science

Here’s a must-listen interview from Apologetics 315.

Details:

Today’s interview is with Robin Collins, professor of philosophy at Messiah College. His training is in physics and in philosophy and he is a leading advocate for using the fine-tuning of the universe as a design argument for theism. He talks about his background and training, the fine-tuning argument, the different types of fine-tuning with examples and illustrations (laws, constants and initial conditions), two different ways of presenting the fine-tuning argument, answering common objections to the argument, the uniqueness of life, variations of the multiverse hypothesis, the failure of multiverse theory to explain away fine-tuning, objections to Victor Stenger, upcoming books, simplifying the fine-tuning argument for practical use, common mistakes when presenting the argument, the most common objection (who designed God?), and more.

Get the MP3 file from Apologetics 315.

Dr. Collins is extremely cautious and circumspect in his assessment of the fine-tuning argument. He takes the objections to the argument, like the multiverse, seriously and that comes across in the interview. He is familiar with criticisms of the argument and he has engaged with skeptics like Victor Stenger in his published work. I highly recommend it. It is a little more suited to intermediate-level Christians, but not so advanced that it’s impossible for non-math beginners to follow the broad thrust of what’s being said.

About Robin Collins:

Robin Collins (PhD, University of Notre Dame, 1993), is professor of philosophy at Messiah College, Grantham, PA specializing in the area of science and religion. He has written over twenty-five articles and book chapters on a wide range of topics, such as the fine-tuning of the cosmos as evidence for the existence of God, evolution and original sin, the Doctrine of Atonement, Asian religions and Christianity, and Bohm’s theory of quantum mechanics. Some of his most recent articles/book chapters are “Philosophy of Science and Religion” in The Oxford Handbook of Science and Religion, “Divine Action and Evolution” in The Oxford Handbook of Philosophical Theology (2009) “The Multiverse Hypothesis: A Theistic Perspective,” in Universe or Multiverse? (Cambridge University Press), and “God and the Laws of Nature,” in Theism or Naturalism: New Philosophical Perspectives (Oxford University Press, forthcoming). He recently received a grant from the John Templeton Foundation to finish a book that presents the case for design based on physics and cosmology, tentatively entitled The Well-Tempered Universe: God, Cosmic Fine-tuning, and the Laws of Nature.

You can read Robin Collins’ testimony here.

The fine-tuning argument

Here’s a short article where Collins gives TWO examples of the fine-tuning. He is very modest in his argument, merely asserting that the fine-tuning is more compatible with theism than it is with atheism.

Excerpt:

Science is commonly thought to have undercut belief in God. As Nobel Prize winning physicist Steven Weinberg famously remarked, “the more we find out about the universe, the more meaningless it all seems.” Yet, the discoveries of modern physics and cosmology in the last 50 years have shown that the structure of the universe is set in an extraordinarily precise way for the existence of life; if its structure were slightly different, even by an extraordinarily small degree, life would not be possible. In many people’s minds, the most straightforward explanation of this remarkable fine-tuning is some sort of divine purpose behind our universe.

This fine-tuning falls into three categories: the fine-tuning of the laws of nature, the fine-tuning of the constants of physics, and the fine-tuning of the initial conditions of the universe. “Fine-tuning of the laws of nature” refers to the fact that if the universe did not have precisely the right combination of laws, complex intelligent life would be impossible. If there were no universal attractive force (law of gravity), for example, matter would be dispersed throughout the universe and the energy sources (such as stars) needed for life would not exist. Without the strong nuclear force that binds protons and neutrons together in the nucleus, there would not be any atoms with an atomic number greater than hydrogen, and hence no complex molecules needed for life. And without the Pauli-exclusion principle, all electrons would fall to the lowest orbital of an atom, undercutting the kind of complex chemistry that life requires.

Some fundamental physical numbers governing the structure of the universe—called the constants of physics—also must fall into an exceedingly narrow range for life to exist. For example, many have estimated that the cosmological constant—a fundamental number that governs the expansion rate of empty space—must be precisely set to one part in 10120 in order for life to occur; if it were too large, the universe would have expanded too rapidly for galaxies and stars to form, and if it were too small, the universe would have collapsed back on itself. As Stephen Hawking wrote in his book A Brief History of Time, “The remarkable fact is that the values of these numbers [i.e. the constants of physics] seem to have been very finely adjusted to make possible the development of life.” Finally, the initial distribution of mass energy at the time of the big bang must have an enormously special configuration for life to occur, which Cambridge University mathematical physicist Roger Penrose has calculated to be on the order of one part in 1010123. This is an unimaginably small number.

I know what you’re thinking: How do we know that non-Christian scientists acknowledge the fine-tuning of gravity in the way that Collins describes?

Well, the New Scientist actually talks about the fine-tuning of the force of gravity. And they’re not Christians.

Excerpt:

The feebleness of gravity is something we should be grateful for. If it were a tiny bit stronger, none of us would be here to scoff at its puny nature.

The moment of the universe‘s birth created both matter and an expanding space-time in which this matter could exist. While gravity pulled the matter together, the expansion of space drew particles of matter apart – and the further apart they drifted, the weaker their mutual attraction became.

It turns out that the struggle between these two was balanced on a knife-edge. If the expansion of space had overwhelmed the pull of gravity in the newborn universe, stars, galaxies and humans would never have been able to form. If, on the other hand, gravity had been much stronger, stars and galaxies might have formed, but they would have quickly collapsed in on themselves and each other. What’s more, the gravitational distortion of space-time would have folded up the universe in a big crunch. Our cosmic history could have been over by now.

Only the middle ground, where the expansion and the gravitational strength balance to within 1 part in 1015at 1 second after the big bang, allows life to form.

Here’s a very long paper by Collins on the fine-tuning argument, where he answers several objections to the argument, including the multiverse/many-universe hypothesis.

If you want a longer response to the multiverse argument, but you don’t want to shell out big bucks for Collins’ chapter in the “Blackwell Companion to Natural Theology“, then you can just get James Sinclair’s essay in “Contending With Christianity’s Critics“.

William Lane Craig lectures on naturalistic alternatives to the Big Bang

William Lane Craig lecturing to university students
William Lane Craig lecturing to university students

Here’s the lecture, which was given in 2004 at the University of Colorado, Boulder.

This lecture might be a little advanced for beginners, but if you stretch your mind first, you shouldn’t tear anything. (Note: standard disclaimers apply if you do tear something!)

The description of the video states:

This is quite simply one of the best lectures William Lane Craig (a philosopher of science) has given. Craig explores the origins of the universe. He argues for a beginning of the universe, while refuting scientific models like the Steady State Theory, the Oscillating Theory, Quantum Vacuum Fluctuation Model, Chaotic Inflationary Theory, Quantum Gravity Theory, String Theory, M-Theory and Cyclic Ekpyrotic Theory.

And here is the description of the lecture from Reasonable Faith:

A Templeton Foundation lecture at the University of Colorado, Boulder, laying out the case from contemporary cosmology for the beginning of the universe and its theological implications. Includes a lengthy Q & A period which features previous critics and debate opponents of Dr. Craig who were in attendance, including Michael Tooley, Victor Stenger, and Arnold Guminski.

Craig has previously debated famous atheists Stenger and Tooley previously. And they both asked him questions in the Q&A time of this lecture. Imagine – having laid out your entire case to two people who have debated you before and who know your arguments well. What did they ask Craig, and how did he respond?

The scientific evidence

The Big Bang cosmology that Dr. Craig presents is the standard model for how the universe came into being. It is a theory based on six lines of experimental evidence.

Scientific evidence:

  1. Einstein’s theory of general relativity (GTR)
  2. the red-shifting of light from distant galaxies implies an expanding universe
  3. the cosmic background radiation (which also disproves the oscillating model of the universe)
  4. the second law of thermodynamics applied to star formation theory
  5. hydrogen-helium abundance predictions
  6. radioactive element abundance predictions

It’s probably a good idea to be familiar with these if you are presenting this argument, because experimental science is a reliable way of knowing about reality.

Published research paper

This lecture by Dr. Craig is based on a research paper published in an astrophysics journal, and was delivered to an audience of students and faculty, including atheist physicist Victor Stenger and prominent atheist philosopher Michael Tooley, at the University of Colorado at Boulder.

Here’s the peer-reviewed article that the lecture is based on.

Here’s the abstract:

Both cosmology and philosophy trace their roots to the wonder felt by the ancient Greeks as they contemplated the universe. The ultimate question remains why the universe exists rather than nothing. This question led Leibniz to postulate the existence of a metaphysically necessary being, which he identified as God. Leibniz’s critics, however, disputed this identification, claiming that the space-time universe itself may be the metaphysically necessary being. The discovery during this century that the universe began to exist, however, calls into question the universe’s status as metaphysically necessary, since any necessary being must be eternal in its existence. Although various cosmogonic models claiming to avert the beginning of the universe predicted by the standard model have been and continue to be offered, no model involving an eternal universe has proved as plausible as the standard model. Unless we are to assert that the universe simply sprang into being uncaused out of nothing, we are thus led to Leibniz’s conclusion. Several objections to inferring a supernatural cause of the origin of the universe are considered and found to be unsound.

The whole text of the article is posted online here.

If you want something to post on your Twitter or Facebook that is much shorter than this lecture, then you should check out this quick 4-minute explanation of the kalam argument.

William Lane Craig lectures on naturalistic alternatives to the Big Bang

William Lane Craig lecturing to university students
William Lane Craig lecturing to university students

Here’s the lecture, which was given in 2004 at the University of Colorado, Boulder.

This lecture might be a little advanced for beginners, but if you stretch your mind first, you shouldn’t tear anything. (Note: standard disclaimers apply if you do tear something!)

The description of the video states:

This is quite simply one of the best lectures William Lane Craig (a philosopher of science) has given. Craig explores the origins of the universe. He argues for a beginning of the universe, while refuting scientific models like the Steady State Theory, the Oscillating Theory, Quantum Vacuum Fluctuation Model, Chaotic Inflationary Theory, Quantum Gravity Theory, String Theory, M-Theory and Cyclic Ekpyrotic Theory.

And here is the description of the lecture from Reasonable Faith:

A Templeton Foundation lecture at the University of Colorado, Boulder, laying out the case from contemporary cosmology for the beginning of the universe and its theological implications. Includes a lengthy Q & A period which features previous critics and debate opponents of Dr. Craig who were in attendance, including Michael Tooley, Victor Stenger, and Arnold Guminski.

Craig has previously debated famous atheists Stenger and Tooley previously. And they both asked him questions in the Q&A time of this lecture. Imagine – having laid out your entire case to two people who have debated you before and who know your arguments well. What did they ask Craig, and how did he respond?

The scientific evidence

The Big Bang cosmology that Dr. Craig presents is the standard model for how the universe came into being. It is a theory based on six lines of experimental evidence.

Scientific evidence:

  1. Einstein’s theory of general relativity (GTR)
  2. the red-shifting of light from distant galaxies implies an expanding universe
  3. the cosmic background radiation (which also disproves the oscillating model of the universe)
  4. the second law of thermodynamics applied to star formation theory
  5. hydrogen-helium abundance predictions
  6. radioactive element abundance predictions

It’s probably a good idea to be familiar with these if you are presenting this argument, because experimental science is a reliable way of knowing about reality.

Published research paper

This lecture by Dr. Craig is based on a research paper published in an astrophysics journal, and was delivered to an audience of students and faculty, including atheist physicist Victor Stenger and prominent atheist philosopher Michael Tooley, at the University of Colorado at Boulder.

Here’s the peer-reviewed article that the lecture is based on.

Here’s the abstract:

Both cosmology and philosophy trace their roots to the wonder felt by the ancient Greeks as they contemplated the universe. The ultimate question remains why the universe exists rather than nothing. This question led Leibniz to postulate the existence of a metaphysically necessary being, which he identified as God. Leibniz’s critics, however, disputed this identification, claiming that the space-time universe itself may be the metaphysically necessary being. The discovery during this century that the universe began to exist, however, calls into question the universe’s status as metaphysically necessary, since any necessary being must be eternal in its existence. Although various cosmogonic models claiming to avert the beginning of the universe predicted by the standard model have been and continue to be offered, no model involving an eternal universe has proved as plausible as the standard model. Unless we are to assert that the universe simply sprang into being uncaused out of nothing, we are thus led to Leibniz’s conclusion. Several objections to inferring a supernatural cause of the origin of the universe are considered and found to be unsound.

The whole text of the article is posted online here.

If you want something to post on your Twitter or Facebook that is much shorter than this lecture, then you should check out this quick 4-minute explanation of the kalam argument.

Is the vastness of the universe evidence against God’s existence?

Apologetics and the progress of science
Apologetics and the progress of science

Physicist Hugh Ross writes about it in Salvo Magazine.

First a quick blurb about Hugh Ross:

Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver’s Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or “quasars,” some of the most distant and ancient objects in the universe.

Now back to the topic “Is the vastness of the universe incompatible with God’s existence?”

Here’s Ross’ introduction:

Scientists seem more difficult to please than the golden-haired girl of fairy-tale fame. While Goldilocks troubled herself over the just-right porridge, chair, and bed, astronomers appear preoccupied with the size of the universe.

In the days before telescopes, when an observer could count a few thousand stars in the night sky, many considered the universe too small and unimpressive to be the work of an almighty, all-knowing Creator. Only an infinite cosmos, they said, would befit an infinite deity. But then, others argued, an infinite cosmos might eliminate the need for a Creator.

Thanks to the Hubble space telescope, scientists now see that the universe contains roughly 200 billion large- and medium-sized galaxies and about a hundred times as many dwarf galaxies. The stars in those galaxies add up to about fifty billion trillion, and they comprise a mere one percent of the mass of the observable universe.

Because of the travel time of light, the universe humans can observe is really the universe of the past. What researchers know about the expansion and geometry of the universe informs us that the universe of today is at least several hundred times more enormous than the universe we can see. The universe is trillions of trillions of times larger and more spectacular than what the earliest astronomers presumed!

And yet, this new knowledge of the vastness of the universe has led to new complaints. In his book, God: The Failed Hypothesis, Victor Stenger says, “If God created the universe as a special place for humanity, he seems to have wasted an awfully large amount of space.” Stephen Hawking, in the best-selling science book of all time, A Brief History of Time, shares Stenger’s view: “Our solar system certainly is a prerequisite for our existence. . . . But there does not seem to be any need for all these other galaxies.” So now the universe is too big to befit the all-wise, all-powerful God of the Bible.

I like how he quotes an atheist physicist to get the challenge right. No sense in caricaturing the claim of your opponent.

I formalized Stenger’s argument like this:

  1. If all things in the universe are not done the way that Victor Stenger likes them, then there is no God.
  2. All things in the universe were not done the way Victor Stenger likes them.
  3. Therefore, there is no God.

I would deny premise 1, there, since there is no reason to believe that’s it’s true.

Anyway, let’s see what Hugh Ross says:

The hot big bang model (now firmly established by observations) tells us that at the moment of cosmic creation, the universe was infinitely or near-infinitely hot and compressed, and all the ordinary matter existed in the form of hydrogen. As the universe expanded, it cooled. The rate at which the universe expanded and cooled depended in large part on its mass—the greater the mass, the slower the expansion and cooling rate. The slower the expansion and cooling rate, the more time the universe would spend in the temperature range (13–150 million degrees Centigrade) at which nuclear fusion can occur.

Because of its mass, the universe spent about twenty seconds in the nuclear fusion temperature range when it was between three and four minutes old. As a result, 24.77 percent of the universe’s hydrogen (by mass) fused into helium. Thus, when stars began to form—about 380,000 years later—they started off composed of about 75 percent hydrogen, 25 percent helium, and trace amounts of deuterium, lithium, and beryllium.

In the nuclear furnaces of the stars themselves, more hydrogen fused into helium, and, in addition to the extra helium, all the rest of the elements that appear in the periodic table were synthesized (created). The capacity of stellar nuclear furnaces to produce an abundance of elements heavier than helium (all but two of the elements) depended critically on how much of the universe’s initial hydrogen was fused into helium and heavier elements during the first several minutes after the cosmic creation event. How much fusion of the universe’s primordial hydrogen actually occurred at this time depended, in turn, on the universe’s mass or mass density.

If the universe’s mass (or cosmic mass density) had been even the slightest bit less than a hundred times the fifty billion trillion stars occupying the observable universe, nuclear fusion during the first several minutes of its existence would have proceeded less efficiently. Thus, the cosmos would have been forever incapable of generating elements heavier than helium—elements such as carbon, nitrogen, oxygen, phosphorus, sodium, and potassium—all of which are essential for any conceivable kind of physical life.

On the other hand, if the universe’s mass had been even the slightest bit greater, nuclear fusion during the first several minutes after its beginning would have been too productive, and all the hydrogen in the universe eventually would have been fused (after just two generations of stars) into elements as heavy as iron or heavier. Again, all the most life-essential elements, including hydrogen itself, would have ceased to exist.

Basically, your body is made up of heavier elements, and if the universe was not as massive as it is (and as old as it is), then there would not be enough heavy elements to make you, or to make massive stars like our Sun which burn steady for long periods of time. We need the heavy elements and we need the steady source of heat.

Dr. Ross has another reason why God would use vast space and long periods of time, and if you want to read that, you can click here. I think that it’s important for us all to get used to the idea that we all need to understand science apologetics. God put these evidences into the universe for us to discover and use.

Luke Barnes reviews Victor Stenger’s critique of cosmic fine-tuning

Apologetics and the progress of science
Apologetics and the progress of science

Victor Stenger is a famous “Internet Infidel” atheist, but what makes him different is that he is has a PhD in physics. He wrote a book published by the atheist publisher Prometheus Press where he explains why he thinks that the universe is not fine-tuned for embodied sentient life.

An Australian physicist named Luke Barnes decided to write a response to his book, and the response is summarized (without the math!) on Uncommon Descent. Barnes has a PhD in Astronomy from Cambridge. He did postdoctoral research in Switzerland at the Institute for Astonomy, and now he is doing more postdoctoral research at the University of Sydney . The response that he wrote does not talk about God, or explanations of why the fine-tuning happened. I have no idea where his convictions are on any of that, because his response just talks about the fine-tuning itself from a scientific point of view.

Here’s how Uncommon Descent explains Barnes’ response.

Summary:

Professor Victor Stenger is an American particle physicist and a noted atheist, who popularized the phrase, “Science flies you to the moon. Religion flies you into buildings”. Professor Stenger is also the author of several books, including his recent best-seller, The Fallacy of Fine-Tuning: How the Universe is Not Designed for Humanity (Prometheus Books, 2011). Stenger’s latest book has been received with great acclaim by atheists: “Stenger has demolished the fine-tuning proponents,” writes one enthusiastic Amazon reviewer, adding that the book tells us “how science is able to demonstrate the non-existence of god.”

Well, it seems that the great Stenger has finally met his match. Dr. Luke A. Barnes, a post-doctoral researcher at the Institute for Astronomy, ETH Zurich, Switzerland, has written a scathing critique of Stenger’s book. I’ve read refutations in my time, but I have to say, this one is devastating.

In his paper, Dr. Barnes takes care to avoid drawing any metaphysical conclusions from the fact of fine-tuning. He has no religious axe to grind. His main concern is simply to establish that the fine-tuning of the universe is real, contrary to the claims of Professor Stenger, who asserts that all of the alleged examples of fine-tuning in our universe can be explained without the need for a multiverse.

Dr. Barnes’ ARXIV paper, The Fine-Tuning of the Universe for Intelligent Life (Version 1, December 21, 2011), is available online, and I shall be quoting from it below. Since the paper is quite technical at times, I’ve omitted mathematical equations and kept the references to physical parameters to a minimum, since I simply wish to give readers an overview of what Dr. Barnes perceives as the key flaws in Professor Stenger’s book.

First, the abstract:

The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger’s recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger’s claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time. I also provide an assessment of the multiverse, noting the significant challenges that it must face. I do not attempt to defend any conclusion based on the fine-tuning of the universe for intelligent life. This paper can be viewed as a critique of Stenger’s book, or read independently.

Here’s a quote that I wanted to put out there from the paper about how widely accepted fine-tuning is among scientists:

There are a great many scientists, of varying religious persuasions, who accept that the universe is fine-tuned for life, e.g. Barrow, Carr, Carter, Davies, Dawkins, Deutsch, Ellis, Greene, Guth, Harrison, Hawking, Linde, Page, Penrose, Polkinghorne, Rees, Sandage, Smolin, Susskind, Tegmark, Tipler, Vilenkin, Weinberg, Wheeler, Wilczek. They differ, of course, on what conclusion we should draw from this fact. Stenger, on the other hand, claims that the universe is not fine-tuned.

That is a very diverse list. I know that Sandage, Ellis, Page, Tipler and Polkinghorne are theists. But I also know that Weinberg, Rees, Hawking, Greene, and Dawkins are atheists. So scientists all across the spectrum of worldview admit that the fine-tuning is real.

Now, let’s look at Barnes’ paper and see why Victor Stenger disagrees with the view of those scientists.

1) Stenger doesn’t show why the entropy at the beginning of the universe isn’t a case of fine-tuning:

Entropy

We turn now to cosmology. The problem of the apparently low entropy of the universe is one of the oldest problems of cosmology. The fact that the entropy of the universe is not at its theoretical maximum, coupled with the fact that entropy cannot decrease, means that the universe must have started in a very special, low entropy state. (p. 23)

Let’s return to Stenger’s proposed solution… Stenger takes it for granted that the universe is homogeneous and isotropic. We can see this also in his use of the Friedmann equation, which assumes that space-time is homogeneous and isotropic. Not surprisingly, once homogeneity and isotropy have been assumed, Stenger finds that the solution to the entropy problem is remarkably easy.

We conclude that Stenger has not only failed to solve the entropy problem; he has failed to comprehend it. He has presented the problem itself as its solution. Homogeneous, isotropic expansion cannot solve the entropy problem – it is the entropy problem. Stenger’s assertion that “the universe starts out with maximum entropy or complete disorder” is false. A homogeneous, isotropic spacetime is an incredibly low entropy state. Penrose (1989) warned of precisely this brand of failed solution two decades ago… (p. 26)

2) Stenger responds to calculations showing the need for fine-tuning by speculating that future calculations will overturn the ones we have now:

The Cosmological Constant, Lambda

The cosmological constant problem is described in the textbook of Burgess & Moore (2006) as “arguably the most severe theoretical problem in high-energy physics today, as measured by both the difference between observations and theoretical predictions, and by the lack of convincing theoretical ideas which address it”. A well-understood and well-tested theory of fundamental physics (Quantum Field Theory – QFT) predicts contributions to the vacuum energy of the universe that are [approx.] 10^120 times greater than the observed total value. Stenger’s reply is guided by the following principle:

Any calculation that disagrees with the data by 50 or 120 orders of magnitude is simply wrong and should not be taken seriously. We just have to await the correct calculation. [FOFT p. 219]

This seems indistinguishable from reasoning that the calculation must be wrong since otherwise the cosmological constant would have to be fine-tuned. One could not hope for a more perfect example of begging the question. More importantly, there is a misunderstanding in Stenger’s account of the cosmological constant problem. The problem is not that physicists have made an incorrect prediction. We can use the term dark energy for any form of energy that causes the expansion of the universe to accelerate, including a “bare” cosmological constant (see Barnes et al., 2005, for an introduction to dark energy). Cosmological observations constrain the total dark energy. QFT [quantum field theory – VJT] allows us to calculate a number of contributions to the total dark energy from matter fields in the universe. Each of these contributions turns out to be 10^120 times larger than the total. There is no direct theory-vs.-observation contradiction as one is calculating and measuring different things. The fine-tuning problem is that these different independent contributions, including perhaps some that we don’t know about, manage to cancel each other to such an alarming, life-permitting degree. This is not a straightforward case of Popperian falsification. (pp. 34-35)

3) Stenger doesn’t consider the full range of values when deciding if something is fine-tuned or not:

Protons, Neutrons, Electrons

We turn now to the relative masses of the three most important particles in our universe: the proton, neutron and electron, from which atoms are made. Consider first the ratio of the electron to the proton mass, … of which Stenger says: “…we can argue that the electron mass is going to be much smaller than the proton mass in any universe even remotely like ours.” [FOFT p. 164] (p. 50)

The fact that Stenger is comparing the electron mass in our universe with the electron mass in universes “like ours” is all the evidence one needs to conclude that Stenger doesn’t understand fine-tuning. The fact that universes like ours turn out to be rather similar to our universe isn’t particularly enlightening. (p. 50)

Finally, and most importantly, note carefully Stenger’s conclusion. He states that no fine-tuning is needed for the neutron-proton mass difference in our universe to be approximately equal to the up quark-down quark mass difference in our universe. Stenger has compared our universe with our universe and found no evidence of fine-tuning. There is no discussion of the life-permitting range, no discussion of the possible range of [mass(neutron) – mass(proton)] (or its relation to the possible range of [mass(down quark) – mass(up quark)], and thus no relevance to fine-tuning whatsoever. (p. 51)

Those are just a few of the examples in the paper, highlighted in the Uncommon Descent article (emphasis theirs).

Barnes’ paper has now been published in a peer-reviewed journal. The journal is published by Cambridge University.