Tag Archives: DNA

How biological convergence falsifies Darwinian evolution

Cornelius Hunter, a software engineer / biologist with a Ph.D in bioinformatics from UIUC explains the latest discovery of biological convergence on his blog. (H/T Tweet from J. Warner Wallace)

Excerpt:

The theory of evolution states that the species arose spontaneously, one from another via a pattern of common descent. This means the species should form an evolutionary tree, where species that share a recent common ancestor, such as two frog species, are highly similar, and species that share a distant common ancestor, such as humans and squids, are very different. But the species do not form such an evolutionary tree pattern. In fact this expectation has been violated so many times it is difficult to keep track. These violations are not rare or occasional anomalies, they are the rule. Entire volumes have been written on them. Many examples are the repeated designs found in what, according to evolution, must be very distant species. Such evolutionary convergence is biology’s version of lightning striking twice. To explain this evolutionists must say that random mutations just happened to hit upon the same detailed, intricate design at different times, in different parts of the world, in different ecological niches, and so forth. The idea that the most complex designs we know of would spontaneously arise by themselves is, itself, not scientifically motivated and a real stretch of the imagination. But for the same intricate designs to arise independently by chance is even more of a stretch. That is why evolutionist’s claim this week that they have found evidence for convergent evolution was so intriguing.

[…]Though evolutionists sometimes deny biological convergence, it is a scientific fact. And a paper from this week added yet another example:

In mammals, hearing is dependent on three canonical processing stages: (i) an eardrum collecting sound, (ii) a middle ear impedance converter, and (iii) a cochlear frequency analyzer. Here, we show that some insects, such as rainforest katydids, possess equivalent biophysical mechanisms for auditory processing. Although katydid ears are among the smallest in all organisms, these ears perform the crucial stage of air-to-liquid impedance conversion and signal amplification, with the use of a distinct tympanal lever system. Further along the chain of hearing, spectral sound analysis is achieved through dispersive wave propagation across a fluid substrate, as in the mammalian cochlea. Thus, two phylogenetically remote organisms, katydids and mammals, have evolved a series of convergent solutions to common biophysical problems, despite their reliance on very different morphological substrates.

It is another curious example of biological convergence, so rather than attempt to deny the undeniable, evolutionists now claim it as another confirmation of evolution.

I’m a software engineer, and we re-use components all the time for different programs that have no “common ancestor”. E.g. – I can develop my String function library and use it in my web application and my Eclipse IDE plug-in, and those two Java programs have no common ancestry, but they do have a common designer. So you find the same bits in two different programs because I am the developer of both programs.

Previously, I blogged about another example of convergence reported by Science Daily. One of the predictions of intelligent design theory is that examples of convergence, which is really just re-use of common code by the designer, will be everywhere in nature. And that predictions just keeps getting confirmed as science marches forward, and the primitive religion of naturalism retreats.

Do non-coding segments of the genome provide evidence for common ancestry?

From Evolution News.

Excerpt:

Darwin’s tree of life might be visible in DNA, if DNA didn’t conspire to scramble the signal.

Now that quite a few genomes have been published, a team from Australia and France went on a Darwin fishing trip in the gene pool. In the largest study of its kind to date, they examined microsatellite markers (tandem-repeated DNA motifs of 1-6 base pairs) that are widespread in eukaryotic genomes. If neo-Darwinism is correct, these non-coding stretches of DNA should reflect the tree of common ancestry by showing similar mutational patterns in related groups.

Well, they don’t. The paper by Meglecz, Neve, Biffin and Gardner in PLoS ONE is titled, “Breakdown of Phylogenetic Signal: A Survey of Microsatellite Densities in 454 Shotgun Sequences from 154 Non Model Eukaryote Species.” What went wrong?

As the title implies, the team checked 154 “non-model” species. Darwinian evolutionists tend to focus on the model species, like a particular roundworm, the fruit fly Drosophila melanogaster, and a species of watercress, because their genomes are complete and most researchers use them in experiments. Problem: they may or may not be representative:

Although information for model species is accumulating rapidly, it is insufficient due to a lack of species depth, thus intragroup variation is necessarily ignored. As such, apparent differences between groups may be overinflated and generalizations cannot be inferred until an analysis of the variation that exists within groupshas been conducted. In this study, we examined microsatellite coverage and motif patterns from 454 shotgun sequences of 154 Eukaryote species from eight distantly related phyla (Cnidaria, Arthropoda, Onychophora, Bryozoa, Mollusca, Echinodermata, Chordata and Streptophyta) to test if a consistent phylogenetic pattern emerges from the microsatellite composition of these species.

Sounds like a good test. After all, scientists shouldn’t generalize on overinflated signals, right? The team expected to find nicely behaved data interpolated between the model species. It wasn’t to be:

It is clear from our results that data from model species provide incomplete information regarding the existing microsatellite variability within the Eukaryotes. A very strong heterogeneity of microsatellite composition was found within most phyla, classes and even orders. Autocorrelation analyses indicated that while microsatellite contents of species within clades more recent than 200 Mya tend to be similar, the autocorrelation breaks down and becomes negative or non-significant with increasing divergence time. Therefore, the age of the taxon seems to be a primary factor in degrading the phylogenetic pattern present among related groups. The most recent classes or orders of Chordates still retain the pattern of their common ancestor. However, within older groups, such as classes of Arthropods, the phylogenetic pattern has been scrambled by the long independent evolution of the lineages.

There are two ways to interpret this anomaly. One is that microsatellites mutate too fast to maintain the phylogenetic signal. (This is known as a “post hoc rationalization.”)

The other is that Darwin was wrong. Data do not show a phylogenetic pattern; they show common design with some variation.

Read the rest here. I’m a skeptic on common ancestry, but not for religious reasons. I just don’t think that it’s compatible with the progress of science.

Doug Axe explains the chances of getting a functional protein by chance

I’ve talked about Doug Axe before when I described how to calculate the odds of getting functional proteins by chance.

Let’s calculate the odds of building a protein composed of a functional chain of 100 amino acids, by chance. (Think of a meaningful English sentence built with 100 scrabble letters, held together with glue)

Sub-problems:

  • BONDING: You need 99 peptide bonds between the 100 amino acids. The odds of getting a peptide bond is 50%. The probability of building a chain of one hundred amino acids in which all linkages involve peptide bonds is roughly (1/2)^99 or 1 chance in 10^30.
  • CHIRALITY: You need 100 left-handed amino acids. The odds of getting a left-handed amino acid is 50%. The probability of attaining at random only L–amino acids in a hypothetical peptide chain one hundred amino acids long is (1/2)^100 or again roughly 1 chance in 10^30.
  • SEQUENCE: You need to choose the correct amino acid for each of the 100 links. The odds of getting the right one are 1 in 20. Even if you allow for some variation, the odds of getting a functional sequence is (1/20)^100 or 1 in 10^65.

The final probability of getting a functional protein composed of 100 amino acids is 1 in 10^125. Even if you fill the universe with pre-biotic soup, and react amino acids at Planck time (very fast!) for 14 billion years, you are probably not going to get even 1 such protein. And you need at least 100 of them for minimal life functions, plus DNA and RNA.

Research performed by Doug Axe at Cambridge University, and published in the peer-reviewed Journal of Molecular Biology, has shown that the number of functional amino acid sequences is tiny:

Doug Axe’s research likewise studies genes that it turns out show great evidence of design. Axe studied the sensitivities of protein function to mutations. In these “mutational sensitivity” tests, Dr. Axe mutated certain amino acids in various proteins, or studied the differences between similar proteins, to see how mutations or changes affected their ability to function properly. He found that protein function was highly sensitive to mutation, and that proteins are not very tolerant to changes in their amino acid sequences. In other words, when you mutate, tweak, or change these proteins slightly, they stopped working. In one of his papers, he thus concludes that “functional folds require highly extraordinary sequences,” and that functional protein folds “may be as low as 1 in 10^77.”

The problem of forming DNA by sequencing nucleotides faces similar difficulties. And remember, mutation and selection cannot explain the origin of the first sequence, because mutation and selection require replication, which does not exist until that first living cell is already in place.

But you can’t show that to your friends, you need to send them a video. And I have a video!

A video of Doug Axe explaining the calculation

Here’s a clip from Illustra Media’s new ID DVD “Darwin’s Dilemma”, which features Doug Axe and Stephen Meyer (both with Ph.Ds from Cambridge University).

I hope you all read Brian Auten’s review of Darwin’s Dilemma! It was awesome.

Related DVDs

Illustra also made two other great DVDs on intelligent design. The first two DVDs “Unlocking the Mystery of Life” and “The Privileged Planet” are must-buys, but you can watch them on youtube if you want, for free.

Here are the 2 playlists:

I also recommend Coldwater Media’s “Icons of Evolution”. All three of these are on sale from Amazon.com.

Related posts