Tag Archives: Materialism

Stephen C. Meyer lectures on intelligent design and the origin of life

A MUST-SEE lecture based on Dr. Stephen C. Meyer’s book “Signature in the Cell“. One of my favorite 6 arguments for a Creator and Designer is the origin of the simplest replicating living system. When you look into the cell, what you’ll find is carefully sequenced components that for complex structures, like proteins. In this lecture, you’ll learn all about this “biological information”.

I highly recommend watching the lecture, and looking at the slides. The quality of the video and the content is first class. There is some Q&A (9 minutes) at the end of the lecture.

Topics:

  • intelligent design is concerned with measuring the information-creating capabilities of natural forces like mutation and selection
  • Darwinists think that random mutations and natural selection can explain the origin and diversification of living systems
  • Darwinian mechanisms are capable of explaining small-scale adaptive changes within types of organisms
  • but there is skepticism, even among naturalists, that Darwinian mechanisms can explain the origin of animal designs
  • even if you concede that Darwinism can account for all of the basic animal body plans, there is still the problem of life’s origin
  • can Darwinian mechanisms explain the origin of the first life? Is there a good naturalistic hypothesis to explain it?
  • there are at least two places in the history of life where new information is needed: origin of life, and Cambrian explosion
  • overview of the structure of DNA and protein synthesis (he has helpful pictures and he uses the snap lock blocks, too)
  • the DNA molecule is composed of a sequence of bases that code for proteins, and the sequence is carefully selected to have biological function
  • meaningful sequences of things like computer code, English sentences, etc. require an adequate cause
  • it is very hard to arrive at a meaningful sequence of a non-trivial length by randomly picking symbols/letters
  • although any random sequence of letters is improbable, the vast majority of sequences are gibberish/non-compiling code
  • similarly, most random sequences of amino acids are lab-proven (Doug Axe’s work) to be non-functional gibberish
  • the research showing this was conducted at Cambridge University and published in the Journal of Molecular Biology
  • so, random mutation cannot explain the origin of the first living cell
  • however, even natural selection coupled with random mutation cannot explain the first living cell
  • there must already be replication in order for mutation and selection to work, so they can’t explain the first replicator
  • but the origin of life is the origin of the first replicator – there is no replication prior to the first replicator
  • the information in the first replicator cannot be explained by law, such as by chemical bonding affinities
  • the amino acids are attached like magnetic letters on a refrigerator
  • the magnetic force sticks the letters ON the fridge, but they don’t determine the specific sequence of the letters
  • if laws did determine the sequence of letters, then the sequences would be repetitive
  • the three materialist explanations – chance alone, chance and law, law alone – are not adequate to explain the effect
  • the best explanation is that an intelligent cause is responsible for the biological explanation in the first replicator
  • we know that intelligent causes can produce functional sequences of information, e.g. – English, Java code
  • the structure and design of DNA matches up nicely with the design patterns used by software engineers (like WK!)

There are some very good tips in this lecture so that you will be able to explain intelligent design to others in simple ways, using everyday household items and children’s toys to symbolize the amino acids, proteins, sugar phosphate backbones, etc.

Proteins are constructed from a sequence of amino acids:

A sequence of amino acids forming a protein
A sequence of amino acids forming a protein

Proteins sticking onto the double helix structure of DNA:

Some proteins sticking onto the sugar phosphate backbone
Some proteins sticking onto the sugar phosphate backbone

I highly, highly recommend this lecture. You will be delighted and you will learn something.

Here is an article that gives a general overview of how intelligent design challenges. If you want to read something more detailed about the material that he is covering in the lecture above related to the origin of life, there is a pretty good article here.

There is a good breakdown of some of the slides with helpful flow charts here on Uncommon Descent.

Positive arguments for Christian theism

Will computers and robots ever become self-aware?

There is a very famous thought experiment from UC Berkeley philosopher John Searle that all Christian apologists should know about. And now everyone who reads the Wall Street Journal knows about it, because of this article. (Full text available at archive.md)

In that article, Searle is writing about the IBM computer that was programmed to play Jeopardy. Can a robot who wins on Jeopardy be “human”? Searle says no. And his famous Chinese room example (discussed in the article) explains why.

Excerpt:

Imagine that a person—me, for example—knows no Chinese and is locked in a room with boxes full of Chinese symbols and an instruction book written in English for manipulating the symbols. Unknown to me, the boxes are called “the database” and the instruction book is called “the program.” I am called “the computer.”

People outside the room pass in bunches of Chinese symbols that, unknown to me, are questions. I look up in the instruction book what I am supposed to do and I give back answers in Chinese symbols.

Suppose I get so good at shuffling the symbols and passing out the answers that my answers are indistinguishable from a native Chinese speaker’s. I give every indication of understanding the language despite the fact that I actually don’t understand a word of Chinese.

And if I do not, neither does any digital computer, because no computer, qua computer, has anything I do not have. It has stocks of symbols, rules for manipulating symbols, a system that allows it to rapidly transition from zeros to ones, and the ability to process inputs and outputs. That is it. There is nothing else.

Here is a link to the full article by John Searle on the Chinese room illustration.

By the way, Searle is a naturalist – not a theist, not a Christian. Now, let’s hear from a Christian scholar who can make more sense of this for us.

Here’s a related article on “strong AI” by Christian philosopher Jay Richards.

Excerpt:

Popular discussions of AI often suggest that if you keep increasing weak AI, at some point, you’ll get strong AI. That is, if you get enough computation, you’ll eventually get consciousness.

The reasoning goes something like this: There will be a moment at which a computer will be indistinguishable from a human intelligent agent in a blind test. At that point, we will have intelligent, conscious machines.

This does not follow. A computer may pass the Turing test, but that doesn’t mean that it will actually be a self-conscious, free agent.

The point seems obvious, but we can easily be beguiled by the way we speak of computers: We talk about computers learning, making mistakes, becoming more intelligent, and so forth. We need to remember that we are speaking metaphorically.

We can also be led astray by unexamined metaphysical assumptions. If we’re just computers made of meat, and we happened to become conscious at some point, what’s to stop computers from doing the same? That makes sense if you accept the premise—as many AI researchers do. If you don’t accept the premise, though, you don’t have to accept the conclusion.

In fact, there’s no good reason to assume that consciousness and agency emerge by accident at some threshold of speed and computational power in computers. We know by introspection that we are conscious, free beings—though we really don’t know how this works. So we naturally attribute consciousness to other humans. We also know generally what’s going on inside a computer, since we build them, and it has nothing to do with consciousness. It’s quite likely that consciousness is qualitatively different from the type of computation that we have developed in computers (as the “Chinese Room” argument, by philosopher John Searle, seems to show). Remember that, and you’ll suffer less anxiety as computers become more powerful.

Even if computer technology provides accelerating returns for the foreseeable future, it doesn’t follow that we’ll be replacing ourselves anytime soon. AI enthusiasts often make highly simplistic assumptions about human nature and biology. Rather than marveling at the ways in which computation illuminates our understanding of the microscopic biological world, many treat biological systems as nothing but clunky, soon-to-be-obsolete conglomerations of hardware and software. Fanciful speculations about uploading ourselves onto the Internet and transcending our biology rest on these simplistic assumptions. This is a common philosophical blind spot in the AI community, but it’s not a danger of AI research itself, which primarily involves programming and computers.

AI researchers often mix topics from different disciplines—biology, physics, computer science, robotics—and this causes critics to do the same. For instance, many critics worry that AI research leads inevitably to tampering with human nature. But different types of research raise different concerns. There are serious ethical questions when we’re dealing with human cloning and research that destroys human embryos. But AI research in itself does not raise these concerns. It normally involves computers, machines, and programming. While all technology raises ethical issues, we should be less worried about AI research—which has many benign applications—than research that treats human life as a means rather than an end.

When I am playing a game on the computer, I know exactly why what I am doing is fun – I am conscious of it. But the computer has no idea what I am doing. It is just matter in motion. The computer’s behavior is just the determined result of its programming and the inputs I supply to it. And that’s all computers will ever do. Trust me, this is my field. I have the BS and MS in computer science, and I have studied this area. AI has applications for machine learning and search problems, but consciousness is not on the radar. You can’t get there from here.

What’s the best explanation for the origin of life for atheists?

I just ordered the newest edition of “The Mystery of Life’s Origin“, which is a classic book on the origin of life by pro-design authors. The new edition has several new chapters. It reminded me of my interest in the origin of life when I was a younger man, just starting full-time work with a hot Internet start-up in the big city.

Back then, I liked to listen to debates about the origin of life (e.g. – Walter Bradley versus Robert Shapiro, etc.), as well as lectures and interviews. I ordered tons of academic lectures and debates, especially from Access Research Network. Two of my favorite interviews from ARN featured Dr. Charles Thaxton and Dr. Dean Kenyon.

Let’s start with Charles Thaxton’s interview.

And here are the questions:

1. How did you first get interested in the origin of life?
2. How did you come to write The Mystery of Life’s Origin with Walter Bradley and Roger Olsen?
3. Was there an advantage to having the three of you collaborate on the project?
4. What is the primary argument of your book, The Mystery of Life’s Origin?
5. Have scientists come close to developing a plausible naturalistic explanation to the origin of life or do you still consider the origin of life to be a mystery?
6. Do you see a particular irony in the timing of Stanley Miller’s experiments and the discovery of DNA by Watson and Crick?
7. How does the emergence of modern genetics tie in with the Darwinian scenario of life going from simple to complex?
8. What are the major problems with origin of life simulation experiments?
9. Isn’t it rather impressive that amino acids were produced in the Miller experiments?
10. How close is the development of amino acids to the threshold of life?
11. What are the steps involved in producing proteins from amino acids?
12. Why are amino acids isolated during this process?
13. How can the investigator affect the outcome of a simulation experiment?
14. How did you evaluate the different chemical evolution experiments?
15. Are the initial conditions in the simulation experiments plausible?
16. What did the earth’s early atmosphere contain?
17. Will the simulation experiments work with this atmosphere?
18. There seems to be an underlying assumption that the origin of life resulted without any intelligent input whatsoever yet the simulation experiments appear to rely upon intelligent guidance. Could you comment on this irony?
19. Are there any natural processes that would have filtered out destructive ultraviolet light?
20. What additional steps beyond creating amino acids would be required to develop life?
21. What is so difficult about making proteins or nucleic acids?
22. In addition to the energy problem in protein synthesis isn’t there a sequencing problem?
23. Are DNA sequences analogous to a written language?
24. Has Hubert Yockey made similar claims?
25. In The Mystery of Life’s Origin you refer to order, randomness, and specified complexity. Could you give us an overview of these concepts?
26. What do you think the presence of specified complexity in a living system indicates about its origin?
27. In inferring the necessity of intelligence to produce life haven’t you ventured from the realm of science to religion?
28. Could you summarize the reasons why you believe intelligence was involved in the origin of life?
29. What are the major objections to your current point of view?
30. How was The Mystery of Life’s Origin received by the scientific community?
31. What was Dean Kenyon’s response to your critiques of his book, Biochemical Predestination?
32. What was Dean Kenyon’s response to The Mystery of Life’s Origin?
33. Were you a bit apprehensive about meeting Kenyon after writing a book which was quite critical of his views in Biochemical Predestination?
34. Are self-organizational theories plausible?
35. Would you comment on the work done by Prigogine and Eigen?
36. What is your assessment of RNA scenarios?
37. What other problems do you see with an RNA world?

You can learn more about Charles Thaxton here.

And here’s the interview with Dean Kenyon:

And here are the questions:

1. What first interested you in biology and the origin of life? What is your academic background in this area?
2. What was your viewpoint on the origin of life when you wrote Biochemical Predestination?
3. How have your views on the origin of life changed since you wrote Biochemical Predestination?
4. Do many of your colleagues support your new position? If not, why not?
5. What are the general presuppositions that scientists make who study the origin of life?
6. What is the Oparin-Haldane hypothesis, and what role does it play in current research and teaching on the origin of life?
7. What are the major underlying assumptions of the Oparin (chemical evolution) hypothesis?
8. Are there any other important assumptions in origin of life theories?
9. How well are these assumptions supported by currently available scientific data?
10. What is your evaluation of the Miller type of simulation experiment? What do these experiments tell us about possible chemical events on the prebiotic Earth?
11. Is it possible that interfering cross-reactions might prevent life from arising naturalistically?
12. Stanley Miller’s pioneering work in the origin of life assumed a reducing atmosphere of methane, ammonia, water vapor, and carbon dioxide? Is there sufficient empirical support for this assumption?
15. How large a gap is there between the most complex “protocell” model and the simplest living cell?
16. What is the biologically relevant information content of the simplest living organism known to exist? What are estimates for a theoretical minimum information content of the first living cell?
17. How probable is it that such complexity could arise by undirected chemical processes?
19. What are the major unsolved problems in research on the origin of life?
20. What is the relevance of the Second Law of Thermodynamics to the origin of life?
21. Is it plausible that an “RNA world” was the precursor of the first living cells?
25. If life did not originate by chemical evolution on the primitive Earth, what other possible scientific explanations exist?
26. What do you mean by your statement that “perhaps scientism is more widespread than we like to think”?
27. Is it possible that natural processes are insufficient to account for the origin of all biological information?
28. Can science rule out the possibility that most biological information had an intelligent cause?
29. What alternatives are there to pursuing purely naturalistic explanations for the origin of life?
30. What do you mean by “intelligent design” as it relates to the origin of life?
31. Why is an intelligent design or creationist interpretation of scientific data bearing on origins not acceptable to many scientists?
32. What criteria could be used to determine if the information content of living organisms had an intelligent or natural cause?
34. Does academic freedom allow you to discuss the difficulties of scientific naturalism and origin of life theories? If not, why are they protected from criticism?
35. How should the origin of life be taught in light of the California Science Framework policy which states that “nothing in science or in any other field of knowledge shall be taught dogmatically”?
36. How is scientific progress impacted when critiques of current theories are suppressed?

You can learn more about Dean Kenyon here.

The challenge for naturalists posed by the origin of life makes it well worth your time to learn and understand. I used to explain this argument to my entire IT department on white boards when I was a young man. It’s fascinating, and more convincing than personal testimonies or abstract philosophical arguments. Although I read books on the origin of life, I learned how to present the information as an argument by watching the interviews above over and over.

People sometimes ask me how I was able to survive 22 years in IT with my theism intact. It turns out that there are no shortcuts to a theistic worldview. You have to support it with evidence. You have to be able to show your work about how you reached your conclusions. I’m a theist today because I never found a single atheist in any software development job who could even begin to challenge the evidence that I collected from listening to all those lectures and debates that I started from in my early 20s. It was as easy to defeat them as taking candy from a baby.

If only Christian parents and Christian leaders understood the importance of scientific facts when they talk to young people about Christianity. We need to be less worried about hurting the feelings of young people by making them “feel dumb”. Christianity isn’t supposed to be easy. It’s not a bad thing to ask people to work hard at learning how to rationally ground it with evidence. If we want to stop our young people from being lazy, ignorant and cowardly, then the right way to do it is to make them work. Make them learn. Make them fight.