From Evolution News.
Excerpt:
You know about ENCODE, the project that found 80 percent or more of the human genome is transcribed and appears functional. Now, along comes modENCODE: the ENCODE project for model organisms. Results from the fruit fly are in, and Indiana University shares the surprises (for evolutionary theory, that is): “Study of complete RNA collection of fruit fly uncovers unprecedented complexity.”
The paper shows that the Drosophila genome is far more complex than previously suspected and suggests that the same will be true of the genomes of other higher organisms. The paper also reports a number of novel, particular results: that a small set of genes used in the nervous system are responsible for a disproportionate level of complexity; that long regulatory and so-called “antisense” RNAs are especially prominent during gonadal development; that “splicing factors” (proteins that control the maturation of RNAs by splicing) are themselves spliced in complex ways; and that theDrosophila transcriptome undergoes large and interesting changes in response to environmental stresses. (Emphasis added.)
Ten of the 41 researchers from 11 universities working on modENCODE came from IU. They found many genes transcribed only under stress, such as exposure to heat, cold, and toxins. “In total, 5,249 transcript models for 811 genes were revealed only under perturbed conditions,” they said. As if the “junk DNA” myth needed any more pounding, the lead author testifies:
“As usual in science, we’ve answered a number of questions and raised even more. For example, we identified 1,468 new genes, of which 536 were found to reside in previously uncharacterized gene-free zones.“
The post on Evolution News also talks about another study from the University of Vienna on the genome of the sea anemone. Their genome was way more complex than expected, too.
So what is the best explanation for all this specified complexity that enables biological function?
Evolution News explains:
Intelligent design… knows how to explain the observations. Whenever we see a complex, functioning system (like a rollout of a software system), we know intelligence played a role in its origin. We also know that intelligence can explain multiple, independent instantiations of similar systems. We never see, however, complex, networked systems arising de novo by unguided natural processes.
Yes. In the company I work for, we have a release of functional code every month (at least). These explanation for the increase in specified complexity in our applications is that busy little software engineers have been carefully sequencing characters into lines of Java code, for purpose. No rational person believes that you can get huge increases in specified complexity by random chance. Code is code is code. It all requires a coder, just like the Big Bang requires a Big Bang.