Tag Archives: Aliens

Is silicon-based life a possible alternative for carbon-based life?

In a recent debate, atheist philosopher Alex Rosenberg responded to the cosmic fine-tuning argument presented by William Lane Craig by asserting that complex life could be other than it is. He specifically mentioned silicon-based life.

Let’s see what scientists think of his speculation, using this article from Scientific American.

Excerpt:

Group IV of the Periodic Table of the Elements contains carbon (C), silicon (Si) and several heavy metals. Carbon, of course, is the building block of life as we know it. So is it possible that a planet exists in some other solar system where silicon substitutes for carbon? Several science fiction stories feature silicon-based life-forms–sentient crystals, gruesome golden grains of sand and even a creature whose spoor or scat was bricks of silica left behind. The novellas are good reading, but there are a few problems with the chemistry.

Indeed, carbon and silicon share many characteristics. Each has a so-called valence of four–meaning that individual atoms make four bonds with other elements in forming chemical compounds. Each element bonds to oxygen. Each forms long chains, called polymers, in which it alternates with oxygen. In the simplest case, carbon yields a polymer called poly-acetal, a plastic used in synthetic fibers and equipment. Silicon yields polymeric silicones, which we use to waterproof cloth or lubricate metal and plastic parts.

But when carbon oxidizes–or unites with oxygen say, during burning–it becomes the gas carbon dioxide; silicon oxidizes to the solid silicon dioxide, called silica. The fact that silicon oxidizes to a solid is one basic reason as to why it cannot support life. Silica, or sand is a solid because silicon likes oxygen all too well, and the silicon dioxide forms a lattice in which one silicon atom is surrounded by four oxygen atoms. Silicate compounds that have SiO4-4 units also exist in such minerals as feldspars, micas, zeolites or talcs. And these solid systems pose disposal problems for a living system.

So, first of all, it makes SAND. Second of all, it is so attracted to oxygen that it can’t easily join to make any other polymers that could be used in the chemistry of the minimal functions of a living system.

More:

Also consider that a life-form needs some way to collect, store and utilize energy. The energy must come from the environment. Once absorbed or ingested, the energy must be released exactly where and when it is needed. Otherwise, all of the energy might liberate its heat at once, incinerating the life-form. In a carbon-based world, the basic storage element is a carbohydrate having the formula Cx(HOH)y. This carbohydrate oxidizes to water and carbon dioxide, which are then exchanged with the air; the carbons are connected by single bonds into a chain, a process called catenation. A carbon-based life-form “burns” this fuel in controlled steps using speed regulators called enzymes.

These large, complicated molecules do their job with great precision only because they have a property called “handedness.” When any one enzyme “mates” with compounds it is helping to react, the two molecular shapes fit together like a lock and key, or a shake of hands. In fact, many carbon-based molecules take advantage of right and left-hand forms. For instance, nature chose the same stable six-carbon carbohydrate to store energy both in our livers (in the form of the polymer called glycogen) and in trees (in the form of the polymer cellulose).

Glycogen and cellulose differ mainly in the handedness of a single carbon atom, which forms when the carbohydrate polymerizes, or forms a chain. Cellulose has the most stable form of the two possibilities; glycogen is the next most stable. Because humans don’t have enzymes to break cellulose down into its basic carbohydrate, we cannot utilize it as food. But many lower life-forms, such as bacteria, can.

In short, handedness is the characteristic that provides a variety of biomolecules with their ability to recognize and regulate sundry biological processes. And silicon doesn’t form many compounds having handedness. Thus, it would be difficult for a silicon-based life-form to achieve all of the wonderful regulating and recognition functions that carbon-based enzymes perform for us.

The troubling thing I find about atheists is that they seem to be under the impression that an alternative speculative explanation is a refutation of an argument that is based in evidence.

So it goes like this:

  • origin of the universe? I can speculate about a naturalistic alternative cosmology which is falsified by observations
  • cosmic fine-tuning? I can speculate about an untestable multiverse
  • origin of life? I can speculate about unobservable aliens who seeded the Earth with life
  • Cambrian explosion? I can speculate about intermediary fossils that have not yet been discovered
  • habitability? I can speculate that habitable planets exist just outside the boundary of the observable universe
  • resurrection of Jesus? I can speculate that Jesus had an unknown, identical twin brother who showed up when he died and took his place

I think that if we are going to make a worldview, we should ground it in the evidence we have today. We should not have faith in speculative theories that we heard about on Star Trek. Seriously.

New study: gamma ray bursts make life impossible in 90% of galaxies

Galactic Habitable Zone
Galactic Habitable Zone

When you argue for theism from science, you typically use arguments like these:

  • the origin of the universe from nothing (the Big Bang)
  • the fine-tuning of cosmic constants and quantities
  • the origin of the first living cell
  • the sudden origin of animal phyla in the Cambrian explosion
  • the fine-tuning of the galaxy for complex, embodied mind
  • the fine-tuning of the solar system for complex, embodied mind
  • the fine-tuning of the planet (and moon)  for complex, embodied mind

This is a peer-reviewed article from Science, one of the most prestigious peer-reviewed journals. It speaks to the fine-tuning of the galaxy for life.

The article says:

Of the estimated 100 billion galaxies in the observable universe, only one in 10 can support complex life like that on Earth, a pair of astrophysicists argues. Everywhere else, stellar explosions known as gamma ray bursts would regularly wipe out any life forms more elaborate than microbes. The detonations also kept the universe lifeless for billions of years after the big bang, the researchers say.

[…]Astrophysicists once thought gamma ray bursts would be most common in regions of galaxies where stars are forming rapidly from gas clouds. But recent data show that the picture is more complex: Long bursts occur mainly in star-forming regions with relatively low levels of elements heavier than hydrogen and helium—low in “metallicity,” in astronomers’ jargon.

Using the average metallicity and the rough distribution of stars in our Milky Way galaxy, Piran and Jimenez estimate the rates for long and short bursts across the galaxy. They find that the more-energetic long bursts are the real killers and that the chance Earth has been exposed to a lethal blast in the past billion years is about 50%. Some astrophysicists have suggested a gamma ray burst may have caused the Ordovician extinction, a global cataclysm about 450 million years ago that wiped out 80% of Earth’s species, Piran notes.

The researchers then estimate how badly a planet would get fried in different parts of the galaxy. The sheer density of stars in the middle of the galaxy ensures that planets within about 6500 light-years of the galactic center have a greater than 95% chance of having suffered a lethal gamma ray blast in the last billion years, they find. Generally, they conclude, life is possible only in the outer regions of large galaxies. (Our own solar system is about 27,000 light-years from the center.)

Things are even bleaker in other galaxies, the researchers report. Compared with the Milky Way, most galaxies are small and low in metallicity. As a result, 90% of them should have too many long gamma ray bursts to sustain life, they argue. What’s more, for about 5 billion years after the big bang, all galaxies were like that, so long gamma ray bursts would have made life impossible anywhere.

But are 90% of the galaxies barren? That may be going too far, Thomas says. The radiation exposures Piran and Jimenez talk about would do great damage, but they likely wouldn’t snuff out every microbe, he contends. “Completely wiping out life?” he says. “Maybe not.” But Piran says the real issue is the existence of life with the potential for intelligence. “It’s almost certain that bacteria and lower forms of life could survive such an event,” he acknowledges. “But [for more complex life] it would be like hitting a reset button. You’d have to start over from scratch.”

The analysis could have practical implications for the search for life on other planets, Piran says. For decades, scientists with the SETI Institute in Mountain View, California, have used radio telescopes to search for signals from intelligent life on planets around distant stars. But SETI researchers are looking mostly toward the center of the Milky Way, where the stars are more abundant, Piran says. That’s precisely where gamma ray bursts may make intelligent life impossible, he says: “We are saying maybe you should look in the exact opposite direction.”

You need to be able to pick up enough heavy elements from surrounding supernovae to make a metal-rich star, but you have to be far enough away from other stars to avoid getting blasted with gamma rays. The metal-rich star is needed to be able to support the circumstellar habitable zone, which is the zone where liquid water exists on the planet’s surface.

It’s important to understand that this factor in the study just a few of the things you need in order to get a planet that supports life. The more factors you add, the more unexpected complex, embodied life of any kind becomes.

Here are a few of the more well-known ones:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

There’s a good video on the galactic habitable zone for you to watch right here:

It takes a lot to make just one planet that can support complex, embodied life of any kind.

What makes a planet suitable for supporting complex life?

The Circumstellar Habitable Zone (CHZ)

What do you need in order to have a planet that supports complex life? First, you need liquid water at the surface of the planet. But there is only a narrow range of temperatures that can support liquid water. It turns out that the size of the star that your planet orbits around has a lot to do with whether you get liquid water or not. A heavy, metal-rich star allows you to have a habitable planet far enough from the star so  the planet can support liquid water on the planet’s surface while still being able to spin on its axis. The zone where a planet can have liquid water at the surface is called the circumstellar habitable zone (CHZ). A metal-rich star like our Sun is very massive, which moves the habitable zone out further away from the star. If our star were smaller, we would have to orbit much closer to the star in order to have liquid water at the surface. Unfortunately, if you go too close to the star, then your planet becomes tidally locked, like the moon is tidally locked to Earth. Tidally locked planets are inhospitable to life.

Circumstellar Habitable Zone
Circumstellar Habitable Zone

Here, watch a clip from The Privileged Planet: (Clip 4 of 12, full playlist here)

But there’s more.

The Galactic Habitable Zone (GHZ)

So, where do you get the heavy elements you need for your heavy metal-rich star?

You have to get the heavy elements for your star from supernova explosions – explosions that occur when certain types of stars die. That’s where heavy elements come from. But you can’t be TOO CLOSE to the dying stars, because you will get hit by nasty radiation and explosions. So to get the heavy elements from the dying stars, your solar system needs to be in the galactic habitable zone (GHZ) – the zone where you can pickup the heavy elements you need but not get hit by radiation and explosions. The GHZ lies between the spiral arms of a spiral galaxy. Not only do you have to be in between the arms of the spiral galaxy, but you also cannot be too close to the center of the galaxy. The center of the galaxy is too dense and you will get hit with massive radiation that will break down your life chemistry. But you also can’t be too far from the center, because you won’t get enough heavy elements because there are fewer dying stars the further out you go. You need to be in between the spiral arms, a medium distance from the center of the galaxy.

Like this:

Galactic Habitable Zone
Galactic Habitable Zone and Solar Habitable Zone

Here, watch a clip from The Privileged Planet: (Clip 10 of 12, full playlist here)

The GHZ is based on a discovery made by astronomer Guillermo Gonzalez, which made the front cover of Scientific American in 2001. That’s right, the cover of Scientific American. I actually stole the image above of the GHZ and CHZ (aka solar habitable zone) from his Scientific American article (linked above).

These are just a few of the things you need in order to get a planet that supports life.

Here are a few of the more well-known ones:

  • a solar system with a single massive Sun than can serve as a long-lived, stable source of energy
  • a terrestrial planet (non-gaseous)
  • the planet must be the right distance from the sun in order to preserve liquid water at the surface – if it’s too close, the water is burnt off in a runaway greenhouse effect, if it’s too far, the water is permanently frozen in a runaway glaciation
  • the solar system must be placed at the right place in the galaxy – not too near dangerous radiation, but close enough to other stars to be able to absorb heavy elements after neighboring stars die
  • a moon of sufficient mass to stabilize the tilt of the planet’s rotation
  • plate tectonics
  • an oxygen-rich atmosphere
  • a sweeper planet to deflect comets, etc.
  • planetary neighbors must have non-eccentric orbits

By the way, you can watch a lecture with Guillermo Gonzalez explaining his ideas further. This lecture was delivered at UC Davis in 2007. That link has a link to the playlist of the lecture, a bio of the speaker, and a summary of all the topics he discussed in the lecture. An excellent place to learn the requirements for a suitable habitat for life.

Pew survey: evangelical Christians least likely to believe superstitious nonsense

The Pew Research survey is here.

They are trying to see which groups believe in superstitions and new age mysticism.

Here are the parts that I found interesting:

Click for full image.

Click for full image.

Notice the numbers for Republicans vs Democrats, conservatives vs. liberals, and church-attending vs non church-attending. The least superstitious people are conservative evangelical Republicans, while the most superstitious people are Democrat liberals who don’t attend church. I think there is something to be learned from that. It’s consistent with the results of a Gallup survey that showed that evangelical Christians are the most rational people on the planet.

Here’s the Wall Street Journal article about the Gallup survey entitled “Look Who’s Irrational Now“.

Excerpt:

The reality is that the New Atheist campaign, by discouraging religion, won’t create a new group of intelligent, skeptical, enlightened beings. Far from it: It might actually encourage new levels of mass superstition. And that’s not a conclusion to take on faith — it’s what the empirical data tell us.

“What Americans Really Believe,” a comprehensive new study released by Baylor University yesterday, shows that traditional Christian religion greatly decreases belief in everything from the efficacy of palm readers to the usefulness of astrology. It also shows that the irreligious and the members of more liberal Protestant denominations, far from being resistant to superstition, tend to be much more likely to believe in the paranormal and in pseudoscience than evangelical Christians.

The Gallup Organization, under contract to Baylor’s Institute for Studies of Religion, asked American adults a series of questions to gauge credulity.

[…]The answers were added up to create an index of belief in occult and the paranormal. While 31% of people who never worship expressed strong belief in these things, only 8% of people who attend a house of worship more than once a week did.

Even among Christians, there were disparities. While 36% of those belonging to the United Church of Christ, Sen. Barack Obama’s former denomination, expressed strong beliefs in the paranormal, only 14% of those belonging to the Assemblies of God, Sarah Palin’s former denomination, did. In fact, the more traditional and evangelical the respondent, the less likely he was to believe in, for instance, the possibility of communicating with people who are dead.

When I think of the “weird” things that evangelical Christians believe, I think of the origin of the universe, the cosmic fine-tuning, the origin of life and the sudden origin of animal body plans in the Cambrian. All of this is superstition to an atheist, and yet all of it is rooted in mainstream science. Not just that, but they’ve grown stronger as science has progressed. I can accept the fact that an atheist may be ignorant of the science that defeats his atheism, but that’s something that has to be remedied with more studying of the evidence, not less. If you generate a worldview by 1) your desire to dispense with moral judgment and/or 2) your desire to prefer Star Trek and Star Wars to mainstream science, then of course you are going to have an irrational worldview. I’m not saying that all atheists do this, surely someone like Peter Millican does not. But for rank-and-file Dawkins acolytes, I think this is pretty accurate, and it’s why we get the survey results that we do.

How likely is it for blind forces to sequence a functional protein by chance?

How likely is it that you could swish together amino acids randomly and come up with a sequence that would fold up into a functional protein?

Evolution News reports on research performed by Doug Axe at Cambridge University, and published in the peer-reviewed Journal of Molecular Biology.

Excerpt:

Doug Axe’s research likewise studies genes that it turns out show great evidence of design. Axe studied the sensitivities of protein function to mutations. In these “mutational sensitivity” tests, Dr. Axe mutated certain amino acids in various proteins, or studied the differences between similar proteins, to see how mutations or changes affected their ability to function properly.10 He found that protein function was highly sensitive to mutation, and that proteins are not very tolerant to changes in their amino acid sequences. In other words, when you mutate, tweak, or change these proteins slightly, they stopped working. In one of his papers, he thus concludes that “functional folds require highly extraordinary sequences,” and that functional protein folds “may be as low as 1 in 10^77.”11 The extreme unlikelihood of finding functional proteins has important implications for intelligent design.

Just so you know, those footnotes say this:

[10.] Douglas D. Axe, “Estimating the Prevalence of Protein Sequences Adopting Functional Enzyme Folds,” Journal of Molecular Biology, 1-21 (2004); Douglas D. Axe, “Extreme Functional Sensitivity to Conservative Amino Acid Changes on Enzyme Exteriors,” Journal of Molecular Biology, Vol. 301:585-595 (2000).

[11.] Douglas D. Axe, “Estimating the Prevalence of Protein Sequences Adopting Functional Enzyme Folds,” Journal of Molecular Biology, 1-21 (2004).

And remember, you need a lot more than just 1 protein in order to create even the simplest living system. Can you generate that many proteins in the short time between when the Earth cools and the first living cells appear? Even if we spot the naturalist a prebiotic soup as big as the universe, and try to make sequences as fast as possible, it’s unlikely to generate even one protein in the time before first life appears.

Here’s Doug Axe to explain his research:

If you are building a protein for the FIRST TIME, you have to get it right all at once – not by building up to it gradually using supposed Darwinian mechanisms. That’s because there is no replication before you have the first replicator. The first replicator cannot rely on explanations that require replication to already be in place.