Tag Archives: Common Design

Convergence detected in the genetic structure of bats and dolphins

Apologetics and the progress of science
Apologetics and the progress of science

We have to start this post with the definition of convergence in biology.

In evolutionary biology, convergent evolution is the process whereby organisms not closely related (not monophyletic), independently evolve similar traits as a result of having to adapt to similar environments or ecological niches.

It is the opposite of divergent evolution, where related species evolve different traits.

On a molecular level, this can happen due to random mutation unrelated to adaptive changes; see long branch attraction. In cultural evolution, convergent evolution is the development of similar cultural adaptations to similar environmental conditions by different peoples with different ancestral cultures. An example of convergent evolution is the similar nature of the flight/wings of insects, birds, pterosaurs, and bats.

All four serve the same function and are similar in structure, but each evolved independently.

Jonathan Wells explains the problem that convergence poses for naturalistic evolution:

Human designers reuse designs that work well. Life forms also reuse certain structures (the camera eye, for example, appears in humans and octopuses). How well does this evidence support Darwinian evolution? Does it support intelligent design more strongly?

Evolutionary biologists attribute similar biological structures to either common descent or convergence. Structures are said to result from convergence if they evolved independently from distinct lines of organisms. Darwinian explanations of convergence strain credulity because they must account for how trial-and-error tinkering (natural selection acting on random variations) could produce strikingly similar structures in widely different organisms and environments. It’s one thing for evolution to explain similarity by common descent—the same structure is then just carried along in different lineages. It’s another to explain it as the result of blind tinkering that happened to hit on the same structure multiple times. Design proponents attribute such similar structures to common design (just as an engineer may use the same parts in different machines). If human designers frequently reuse successful designs, the designer of nature can surely do the same.

I’m a software engineer, and we re-use components all the time for different programs that have no “common ancestor”. E.g. – I can develop my String function library and use it in my web application and my Eclipse IDE plug-in, and those two Java programs have nothing in common. So you find the same bits in two different programs because I am the developer of both programs. But the two programs don’t extend from a common program that was used for some other purpose – they have no “common ancestor” program.

Now with that in mind, take a look at this recent article from Science Daily, which Mysterious Micah sent me.

Excerpt:

The evolution of similar traits in different species, a process known as convergent evolution, is widespread not only at the physical level, but also at the genetic level, according to new research led by scientists at Queen Mary University of London and published in Nature this week.

The scientists investigated the genomic basis for echolocation, one of the most well-known examples of convergent evolution to examine the frequency of the process at a genomic level.

Echolocation is a complex physical trait that involves the production, reception and auditory processing of ultrasonic pulses for detecting unseen obstacles or tracking down prey, and has evolved separately in different groups of bats and cetaceans (including dolphins).

The scientists carried out one of the largest genome-wide surveys of its type to discover the extent to which convergent evolution of a physical feature involves the same genes.

They compared genomic sequences of 22 mammals, including the genomes of bats and dolphins, which independently evolved echolocation, and found genetic signatures consistent with convergence in nearly 200 different genomic regions concentrated in several ‘hearing genes’.

[…]Consistent with an involvement in echolocation, signs of convergence among bats and the bottlenose dolphin were seen in many genes previously implicated in hearing or deafness.

“We had expected to find identical changes in maybe a dozen or so genes but to see nearly 200 is incredible,” explains Dr Joe Parker, from Queen Mary’s School of Biological and Chemical Sciences and first author on the paper.

“We know natural selection is a potent driver of gene sequence evolution, but identifying so many examples where it produces nearly identical results in the genetic sequences of totally unrelated animals is astonishing.”

Nature is the most prestigious peer-reviewed science journal. This is solid material.

There is an earlier article from 2010 in New Scientist that talked about one of the previous genes that matched for hearing capability.

Excerpt:

Bats and dolphins trod an identical genetic path to evolve a vital component of the complex sonar systems they use to pursue and catch prey.

The finding is unusual, because although many creatures have independently evolved characteristics such as eyes, tusks or wings, they usually took diverse genetic routes to get there.

Analysis of a specific gene has now demonstrated that although bats live in air and dolphins in water, where sound travels five times faster, they independently evolved a near-identical gene that allows them to accept high-frequency sound in the ear – vital for sonar.

The gene makes prestin, a protein in hair cells of the cochlea, which is the organ in the inner ear where sonar signals are accepted and amplified. Prestin changes shape when exposed to high-frequency sound, and this in turn deforms the fine hair cells, setting off an electrical impulse to the brain. So the protein has the important jobs of detecting and selecting high-frequency sounds for amplification.

When researchers examined the molecular structure of the prestin gene from a range of animals, they found that the variants in echolocating bats and dolphins were virtually indistinguishable.

Indistinguishable genes in animals that don’t share a common ancestor? Maybe a better explanation for the evidence we have is – common designer.

New study: how the hummingbird performs stunning feats of aerobatics

Hummingbird in flight
Hummingbird in flight

New study reported by Science Daily.

Excerpt:

The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How do they do it?

Now, the most detailed, three-dimensional aerodynamic simulation of hummingbird flight conducted to date has definitively demonstrated that the hummingbird achieves its nimble aerobatic abilities through a unique set of aerodynamic forces that are more closely aligned to those found in flying insects than to other birds.

The new supercomputer simulation was produced by a pair of mechanical engineers at Vanderbilt University who teamed up with a biologist at the University of North Carolina at Chapel Hill. It is described in the article “Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird” published this fall in the Journal of the Royal Society Interface.

For some time researchers have been aware of the similarities between hummingbird and insect flight, but some experts have supported an alternate model which proposed that hummingbird’s wings have aerodynamic properties similar to helicopter blades. However, the new realistic simulation demonstrates that the tiny birds make use of unsteady airflow mechanisms, generating invisible vortices of air that produce the lift they need to hover and flit from flower to flower.

You might think that if the hummingbird simply beats its wings fast enough and hard enough it can push enough air downward to keep its small body afloat. But, according to the simulation, lift production is much trickier than that.

For example, as the bird pulls its wings forward and down, tiny vortices form over the leading and trailing edges and then merge into a single large vortex, forming a low-pressure area that provides lift. In addition, the tiny birds further enhance the amount of lift they produce by pitching up their wings (rotate them along the long axis) as they flap.

Hummingbirds perform another neat aerodynamic trick — one that sets them apart from their larger feathered relatives. They not only generate positive lift on the downstroke, but they also generate lift on the upstroke by inverting their wings. As the leading edge begins moving backwards, the wing beneath it rotates around so the top of the wing becomes the bottom and bottom becomes the top. This allows the wing to form a leading edge vortex as it moves backward generating positive lift.

According to the simulation, the downstroke produces most of the thrust but that is only because the hummingbird puts more energy into it. The upstroke produces only 30 percent as much lift but it takes only 30 percent as much energy, making the upstroke equally as aerodynamically efficient as the more powerful downstroke.

Large birds, by contrast, generate almost all of their lift on the downstroke. They pull in their wings toward their bodies to reduce the amount of negative lift they produce while flapping upward.

Awesome design in nature!

So the question I have from reading the article is this. Do birds and flying insects have a recent common ancestor? I don’t have too many friends who can answer this for me, but I asked one of them and they both said there is no recent common ancestor for hummingbirds and flying insects. So this looks like another example of convergence – common design in two animals that don’t share a recent common ancestor.

Convergence detected in the genetic structure of bats and dolphins

We have to start this post with the definition of convergence in biology.

In evolutionary biology, convergent evolution is the process whereby organisms not closely related (not monophyletic), independently evolve similar traits as a result of having to adapt to similar environments or ecological niches.

It is the opposite of divergent evolution, where related species evolve different traits.

On a molecular level, this can happen due to random mutation unrelated to adaptive changes; see long branch attraction. In cultural evolution, convergent evolution is the development of similar cultural adaptations to similar environmental conditions by different peoples with different ancestral cultures. An example of convergent evolution is the similar nature of the flight/wings of insects, birds, pterosaurs, and bats.

All four serve the same function and are similar in structure, but each evolved independently.

Jonathan Wells explains the problem that convergence poses for naturalistic evolution:

Human designers reuse designs that work well. Life forms also reuse certain structures (the camera eye, for example, appears in humans and octopuses). How well does this evidence support Darwinian evolution? Does it support intelligent design more strongly?

Evolutionary biologists attribute similar biological structures to either common descent or convergence. Structures are said to result from convergence if they evolved independently from distinct lines of organisms. Darwinian explanations of convergence strain credulity because they must account for how trial-and-error tinkering (natural selection acting on random variations) could produce strikingly similar structures in widely different organisms and environments. It’s one thing for evolution to explain similarity by common descent—the same structure is then just carried along in different lineages. It’s another to explain it as the result of blind tinkering that happened to hit on the same structure multiple times. Design proponents attribute such similar structures to common design (just as an engineer may use the same parts in different machines). If human designers frequently reuse successful designs, the designer of nature can surely do the same.

I’m a software engineer, and we re-use components all the time for different programs that have no “common ancestor”. E.g. – I can develop my String function library and use it in my web application and my Eclipse IDE plug-in, and those two Java programs have nothing in common. So you find the same bits in two different programs because I am the developer of both programs. But the two programs don’t extend from a common program that was used for some other purpose – they have no “common ancestor” program.

Now with that in mind, take a look at this recent article from Science Daily, which Mysterious Micah sent me.

Excerpt:

The evolution of similar traits in different species, a process known as convergent evolution, is widespread not only at the physical level, but also at the genetic level, according to new research led by scientists at Queen Mary University of London and published in Nature this week.

The scientists investigated the genomic basis for echolocation, one of the most well-known examples of convergent evolution to examine the frequency of the process at a genomic level.

Echolocation is a complex physical trait that involves the production, reception and auditory processing of ultrasonic pulses for detecting unseen obstacles or tracking down prey, and has evolved separately in different groups of bats and cetaceans (including dolphins).

The scientists carried out one of the largest genome-wide surveys of its type to discover the extent to which convergent evolution of a physical feature involves the same genes.

They compared genomic sequences of 22 mammals, including the genomes of bats and dolphins, which independently evolved echolocation, and found genetic signatures consistent with convergence in nearly 200 different genomic regions concentrated in several ‘hearing genes’.

[…]Consistent with an involvement in echolocation, signs of convergence among bats and the bottlenose dolphin were seen in many genes previously implicated in hearing or deafness.

“We had expected to find identical changes in maybe a dozen or so genes but to see nearly 200 is incredible,” explains Dr Joe Parker, from Queen Mary’s School of Biological and Chemical Sciences and first author on the paper.

“We know natural selection is a potent driver of gene sequence evolution, but identifying so many examples where it produces nearly identical results in the genetic sequences of totally unrelated animals is astonishing.”

Nature is the most prestigious peer-reviewed science journal. This is solid material.

There is an earlier article from 2010 in New Scientist that talked about one of the previous genes that matched for hearing capability.

Excerpt:

Bats and dolphins trod an identical genetic path to evolve a vital component of the complex sonar systems they use to pursue and catch prey.

The finding is unusual, because although many creatures have independently evolved characteristics such as eyes, tusks or wings, they usually took diverse genetic routes to get there.

Analysis of a specific gene has now demonstrated that although bats live in air and dolphins in water, where sound travels five times faster, they independently evolved a near-identical gene that allows them to accept high-frequency sound in the ear – vital for sonar.

The gene makes prestin, a protein in hair cells of the cochlea, which is the organ in the inner ear where sonar signals are accepted and amplified. Prestin changes shape when exposed to high-frequency sound, and this in turn deforms the fine hair cells, setting off an electrical impulse to the brain. So the protein has the important jobs of detecting and selecting high-frequency sounds for amplification.

When researchers examined the molecular structure of the prestin gene from a range of animals, they found that the variants in echolocating bats and dolphins were virtually indistinguishable.

Indistinguishable genes in animals that don’t share a common ancestor? Maybe a better explanation for the evidence we have is – common designer.