Tag Archives: Boltzmann Brain

What are Boltzmann brains, and what challenge do they post to the multiverse hypothesis?

I thought I would turn to the atheist theoretical physicist Sean Carroll, who has previously debated William Lane Craig, to explain to us what a Boltzmann brain is, and what threat it posts to the multiverse hypothesis.

Here is Sean Caroll, quoted by About.com:

Ludwig Boltzmann was one of the founders of the field of thermodynamics in the nineteenth century. One of the key concepts was the second law of thermodynamics, which says that the entropy of a closed system always increases. Since the universe is a closed system, we would expect the entropy to decrease over time. This means that, given enough time, the most likely state of the universe is one where everything is the in thermodynamic equilibrium … but we clearly don’t exist in a universe of this type since, after all, there is order all around us in various forms, not the least of which is the fact that we exist.

With this in mind, we can apply the anthropic principle to inform our reasoning by taking into account that we do, in fact, exist. Here the logic gets a little confusing, so I’m going to borrow the words from a couple of more detailed looks at the situation. As described by cosmologist Sean Carroll in From Eternity to Here:

Boltzmann invoked the anthropic principle (although he didn’t call it that) to explain why we wouldn’t find ourselves in one of the very common equilibrium phases: In equilibrium, life cannot exist. Clearly, what we want to do is find the most common conditions within such a universe that are hospitable to life. Or, if we want to be more careful, perhaps we should look for conditions that are not only hospitable to life, but hospitable to the particular kind of intelligent and self-aware life that we like to think we are….

We can take this logic to its ultimate conclusion. If what we want is a single planet, we certainly don’t need a hundred billion galaxies with a hundred billion stars each. And if what we want is a single person, we certainly don’t need an entire planet. But if in fact what we want is a single intelligence, able to think about the world, we don’t even need an entire person–we just need his or her brain.

So the reductio ad absurdum of this scenario is that the overwhelming majority of intelligences in this multiverse will be lonely, disembodied brains, who fluctuate gradually out of the surrounding chaos and then gradually dissolve back into it. Such sad creatures have been dubbed “Boltzmann brains” by Andreas Albrecht and Lorenzo Sorbo….

In a 2004 paper, Albrecht and Sorbo discussed “Boltzmann brains” in their essay:

A century ago Boltzmann considered a “cosmology” where the observed universe should be regarded as a rare fluctuation out of some equilibrium state. The prediction of this point of view, quite generically, is that we live in a universe which maximizes the total entropy of the system consistent with existing observations. Other universes simply occur as much more rare fluctuations. This means as much as possible of the system should be found in equilibrium as often as possible.

From this point of view, it is very surprising that we find the universe around us in such a low entropy state. In fact, the logical conclusion of this line of reasoning is utterly solipsistic. The most likely fluctuation consistent with everything you know is simply your brain (complete with “memories” of the Hubble Deep fields, WMAP data, etc) fluctuating briefly out of chaos and then immediately equilibrating back into chaos again. This is sometimes called the “Boltzmann’s Brain” paradox.

[…]Now that you understand Boltzmann brains as a concept, though, you have to proceed a bit to understanding the “Boltzmann brain paradox” that is caused by applying this thinking to this absurd degree. Again, as formulated by Carroll:

Why do we find ourselves in a universe evolving gradually from a state of incredibly low entropy, rather than being isolated creatures that recently fluctuated from the surrounding chaos?

Unfortunately, there is no clear explanation to resolve this … thus why it’s still classified as a paradox.

Naturalists like to propose the multiverse as a way of explaining away the fine-tuning that we see, and explaining why complex, embodied intelligent beings like ourselves exist. But even if the multiverse hypothesis were true, we still would not expect to observe stars, planets, and conscious embodied intelligent beings. It is far more likely on a multiverse scenario that any observers we had would be “Boltzmann” brains in an empty universe. The multiverse hypothesis doesn’t explain the universe we have, which contains “a hundred billion galaxies with a hundred billion stars each” – not to mention our bodies which are composed of heavy elements, all of which require fine-tuning piled on fine-tuning piled on fine-tuning.

William Lane Craig answered a question about Boltzmann brains a while back, so let’s look at his answer since we saw what his debate opponent said above.

He writes:

Incredible as it may sound, today the principal–almost the only–alternative to a Cosmic Designer to explain the incomprehensibly precise fine tuning of nature’s constants and fundamental quantities is the postulate of a World Ensemble of (a preferably infinite number of) randomly ordered universes. By thus multiplying one’s probabilistic resources, one ensures that by chance alone somewhere in this infinite ensemble finely tuned universes like ours will appear.

Now comes the key move: since observers can exist only in worlds fine-tuned for their existence, OF COURSE we observe our world to be fine-tuned! The worlds which aren’t finely tuned have no observers in them and so cannot be observed! Hence, our observing the universe to be fine-tuned for our existence is no surprise: if it weren’t, we wouldn’t be here to be surprised. So this explanation of fine tuning relies on (i) the hypothesis of a World Ensemble and (ii) an observer self-selection effect.

Now apart from objections to (i) of a direct sort, this alternative faces a very formidable objection to (ii), namely, if we were just a random member of a World Ensemble, then we ought to be observing a very different universe. Roger Penrose has calculated that the odds of our solar system’s forming instantaneously through the random collision of particles is incomprehensibly more probable that the universe’s being fine-tuned, as it is. So if we were a random member of a World Ensemble, we should be observing a patch of order no larger than our solar system in a sea of chaos. Worlds like that are simply incomprehensibly more plentiful in the World Ensemble than worlds like ours and so ought to be observed by us if we were but a random member of such an ensemble.

Here’s where the Boltzmann Brains come into the picture. In order to be observable the patch of order needn’t be even as large as the solar system. The most probable observable world would be one in which a single brain fluctuates into existence out of the quantum vacuum and observes its otherwise empty world. The idea isn’t that the brain is the whole universe, but just a patch of order in the midst of disorder. Don’t worry that the brain couldn’t persist long: it just has to exist long enough to have an observation, and the improbability of the quantum fluctuations necessary for it to exist that long will be trivial in comparison to the improbability of fine tuning.

In other words, the observer self-selection effect is explanatorily vacuous. It does not suffice to show that only finely tuned worlds are observable. As Robin Collins has noted, what needs to be explained is not just intelligent life, but embodied, interactive, intelligent agents like ourselves. Appeal to an observer self-selection effect accomplishes nothing because there is no reason whatever to think that most observable worlds are worlds in which that kind of observer exists. Indeed, the opposite appears to be true: most observable worlds will be Boltzmann Brain worlds.

Allen Hainline explained some of the OTHER problems with the multiverse in a post on Cross Examined’s blog. I recommend taking a look at those as well, because I feel funny even talking about Boltzmann brains. I would rather just say that there is no experimental evidence for the multiverse hypothesis, as I blogged before, and leave it at that. But if the person you are talking to fights you on it, you can disprove the multiverse with the Boltzmann brains.

Bruce Gordon: problems with inflationary multiverse cosmologies

From Evolution News. Dr. Bruce Gordon reflects on whether the new BICEP2 results offer any support for the multiverse.

First, quick review of the Big Bang so we’re clear on the challenge that poses for naturalism:

Now, Big Bang theory has its theoretical basis in general relativity, which predicts that the universe is spatiotemporally expanding in the future direction and thus would be contracting if we were to reverse the direction of time. As Roger Penrose and Stephen Hawking showed in the late 1960s, no matter which general-relativistic model of our universe is chosen, this contraction leads to a beginning point in the finite past — a singularity, to use the technical term — from which not just matter and energy, but spacetime itself, emerged. This coming into existence of the universe from nothing (no space, no time, no matter, no energy, and hence no physical laws either) is what is known as the Big Bang. It is, as the agnostic astronomer Robert Jastrow once observed, startling evidence for the doctrine of creation ex nihilo. He famously put it this way:

For the scientist who has lived by his faith in the power of reason [editorial aside: Jastrow might better have said “faith in the sufficiency of materialist explanations” because the inference from the ex nihilo generation of the universe to a transcendent intelligent cause is eminently reasonable], the story ends like a bad dream. He has scaled the mountain of ignorance; he is about to conquer the highest peak; as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries.

This having been established, as the physicist George Gamow demonstrated in 1948, one of the predictions of Big Bang theory is the existence of gravitational ripples and cosmic background radiation (CBR) that are an “echo of Creation,” as it were, throughout the whole observable universe. This cosmic background electromagnetic radiation was discovered in 1965 by Robert Wilson and Arno Penzias, a discovery for which they were awarded the Nobel Prize. In this regard, the alleged detection of gravitational waves would serve as further confirmation of the correctness of Einstein’s theory of general relativity and of the nature of the Big Bang itself. If corroborated by the scientific community, it would be a hugely important discovery, not just because of the evidence it provides for gravitational waves, but also because of the way this discovery is linked to another theory, namely, inflationary cosmology.

Inflationary cosmology is an enhancement to the standard Big Bang cosmology, and some models of inflationary theory can create additional universes. Some people are hoping that this will address the fine-tuning argument.

But Dr. Gordon is having none of that:

Of course, the inflationary mechanism is often regarded as generative of an unending and rapid succession of universes with the idea that, if enough universes are produced by such means, the improbabilities just mentioned don’t matter. Several things need to be said about this “inflationary multiverse” proposal:

(1) First of all, as pointed out by one of the physicists involved in the BICEP2 project, Kent Irwin at Stanford University, the BICEP2 results do not address the truth or falsity of inflationary multiverse theories.

(2) Secondly, attempting to swamp the improbabilities intrinsic to inflation by multiplying the number of universes it generates to the point of compensation has consequences that undermine scientific rationality. In a materialist multiverse resting on the hypothesis of an undirected and irreducibly probabilistic quantum inflationary mechanism that lacks any principle of sufficient material causality, anything can happen for no reason at all. What is more, quantum-mechanically speaking, everything that can happen, no matter how improbable, does happen, and it happens with unlimited frequency. In this environment we can have no confidence that the future will resemble the past in a way that legitimates uniformitarian assumptions and the very inductive inferences that make science possible. In short, taken seriously, the inflationary multiverse proposal completely undermines scientific rationality.

(3) Thirdly, at least two paradoxes result from the inflationary multiverse proposal that suggest our place in such a multiverse must be very special: the “Boltzmann Brain Paradox” and the “Youngness Paradox.” In brief, if the inflationary mechanism is autonomously operative in a way that generates a multiverse, then with probability indistinguishable from one (i.e., virtual necessity) the typical observer in such a multiverse is an evanescent thermal fluctuation with memories of a past that never existed (a Boltzmann brain) rather than an observer of the sort we take ourselves to be. Alternatively, by a second measure, post-inflationary universes should overwhelmingly have just been formed, which means that our existence in an old universe like our own has a probability that is effectively zero (i.e., it’s nigh impossible). So if our universe existed as part of such a multiverse, it would not be at all typical, but rather infinitely improbable (fine-tuned) with respect to its age and compatibility with stable life-forms.

(4) Fourthly, a mechanism that generates universes ad infinitum must have stable characteristics that constrain its operation if it is to avoid breaking down and sputtering to a halt. In short, universe-generators have finely tuned design parameters that themselves require explanation. So postulating a universe-generator to explain away the appearance of first-order design in a single universe does not obviate the inference to design, it merely bumps it up to the next level. Avoiding an infinite regress of explanatory demands leads to the recognition of actual design terminating in an Intelligence that transcends spacetime, matter and energy, and which, existing timelessly logically prior to creating any universe or multiverse, must also therefore exist necessarily, and therefore require no further explanation of its own existence.

(5) Fifthly and finally, as demonstrated by Arvind Borde, Alan Guth, and Alexander Vilenkin in 2003 (see further reading suggestions below), any inflationary multiverse has a beginning in the finite past: while inflationary models can, in theory, be eternal into the future, it is mathematically impossible for them to be eternal into the past. This means that the inflationary multiverse entails creation ex nihilo in precisely the same manner as the Big Bang. The universe thus manifests dependence on a transcendent reality in respect of its origin, but what is more, in virtue of the manifest absence of sufficient material causation in many aspects of its persistence as a quantum-mechanical phenomenon, the material universe also manifests dependence on a transcendent reality in respect of its operation (for an extended argument to this effect, see my article on quantum-theoretic challenges to philosophical naturalism referenced in the suggested readings).

What all of this reveals, of course, is that it’s intelligent design all the way through and all the way down and that theophobic scientific materialists, once they get past knee-jerk denials, must come to terms with what is, for them, a worldview-defeating fact.

The Boltzmann Brain paradox in point 3) came up as a problem with inflationary multiverse cosmologies in the recent Craig-Carroll debate.

I bolded part 4) because as Dr. Robin Collins has argued before, the multiverse-generation mechanism does not get rid of the fine-tuning, it just pushes it up one level. And I bolded part 5) because Dr. Gordon is alluding to the Borde-Guth-Vilenkin (BGV) theorem there, which always comes up in debates on cosmology. The theory applies to inflationary cosmologies: they still require an absolute beginning. These are serious problems that we should not gloss over when people push a speculative model like the multiverse in order to escape the fine-tuning argument.

I always thought of Dr. Gordon as kind of a moderate Canadian guy, but I love that last line, don’t you? :) Don’t fear the reaper, naturalists.