Tag Archives: Finite Mathematics

Guillermo Gonzalez lectures at UC Davis on the requirements for life

The 5 video clips that make up the full lecture.

The playlist for all 5 clips is here.

About the speaker

Guillermo Gonzalez is an Associate Professor of Physics at Grove City College. He received his Ph.D. in Astronomy in 1993 from the University of Washington. He has done post-doctoral work at the University of Texas, Austin and at the University of Washington and has received fellowships, grants and awards from such institutions as NASA, the University of Washington, the Templeton Foundation, Sigma Xi (scientific research society) and the National Science Foundation.

Learn more about the speaker here.

The lecture

Here’s part 1 of 5:

Habitability topics:

  • What is the Copernican Principle?
  • Is the Earth’s suitability for hosting life rare in the universe?
  • Does the Earth have to be the center of the universe to be special?
  • How similar to the Earth does a planet have to be to support life?
  • What is the definition of life?
  • What are the three minimal requirements for life of any kind?
  • Requirement 1: A molecule that can store information (carbon)
  • Requirement 2: A medium in which chemicals can interact (liquid water)
  • Requirement 3: A diverse set of chemical elements
  • What is the best environment for life to exist?
  • Our place in the solar system: the circumstellar habitable zone
  • Our place in the galaxy: the galactic habitable zones
  • Our time in the universe’s history: the cosmic habitable age
  • Other habitability requirements (e.g. – metal-rich star, massive moon, etc.)
  • The orchestration needed to create a habitable planet
  • How different factors depend on one another through time
  • How tweaking one factor can adversely affect other factors
  • How many possible places are there in the universe where life could emerge?
  • Given these probabilistic resources, should we expect that there is life elsewhere?
  • How to calculate probabilities using the “Product Rule”
  • Can we infer that there is a Designer just because life is rare? Or do we need more?

The corelation between habitability and measurability.

  • Are the habitable places in the universe also the best places to do science?
  • Do the factors that make Earth habitable also make it good for doing science?
  • Some places and times in the history of the universe are more habitable than others
  • Those exact places and times also allow us to make scientific discoveries
  • Observing solar eclipses and structure of our star, the Sun
  • Observing stars and galaxies
  • Observing the cosmic microwave background radiation
  • Observing the acceleration of the universe caused by dark matter and energy
  • Observing the abundances of light elements like helium of hydrogen
  • These observations support the big bang and fine-tuning arguments for God’s existence
  • It is exactly like placing observatories on the tops of mountains
  • There are observers existing in the best places to observe things
  • This is EXACTLY how the universe has been designed for making scientific discoveries

This lecture was delivered by Guillermo Gonzalez in 2007 at the University of California at Davis.

What is intelligent design?

Dr. Stephen C. Meyer explains the concept of intelligent design in a lecture, with lots of visual aids.

He is also the author of “Signature in the Cell“, the best book on intelligent design. (A Times Literary Supplement Book of the Year selection)

Related DVDs

Illustra also made two other great DVDs on intelligent design. The first two DVDs “Unlocking the Mystery of Life” and “The Privileged Planet” are must-buys, but you can watch them on youtube if you want, for free.

Here are the 2 playlists:

I also recommend “Darwin’s Dilemma”. All three of these are on sale from Amazon.com.

Guillermo Gonzalez lectures at UC Davis on the requirements for life

The 5 video clips that make up the full lecture.

The playlist for all 5 clips is here.

About the speaker

Guillermo Gonzalez is an Associate Professor of Physics at Grove City College. He received his Ph.D. in Astronomy in 1993 from the University of Washington. He has done post-doctoral work at the University of Texas, Austin and at the University of Washington and has received fellowships, grants and awards from such institutions as NASA, the University of Washington, the Templeton Foundation, Sigma Xi (scientific research society) and the National Science Foundation.

Learn more about the speaker here.

The lecture

Here’s part 1 of 5:

Habitability topics:

  • What is the Copernican Principle?
  • Is the Earth’s suitability for hosting life rare in the universe?
  • Does the Earth have to be the center of the universe to be special?
  • How similar to the Earth does a planet have to be to support life?
  • What is the definition of life?
  • What are the three minimal requirements for life of any kind?
  • Requirement 1: A molecule that can store information (carbon)
  • Requirement 2: A medium in which chemicals can interact (liquid water)
  • Requirement 3: A diverse set of chemical elements
  • What is the best environment for life to exist?
  • Our place in the solar system: the circumstellar habitable zone
  • Our place in the galaxy: the galactic habitable zones
  • Our time in the universe’s history: the cosmic habitable age
  • Other habitability requirements (e.g. – metal-rich star, massive moon, etc.)
  • The orchestration needed to create a habitable planet
  • How different factors depend on one another through time
  • How tweaking one factor can adversely affect other factors
  • How many possible places are there in the universe where life could emerge?
  • Given these probabilistic resources, should we expect that there is life elsewhere?
  • How to calculate probabilities using the “Product Rule”
  • Can we infer that there is a Designer just because life is rare? Or do we need more?

The corelation between habitability and measurability.

  • Are the habitable places in the universe also the best places to do science?
  • Do the factors that make Earth habitable also make it good for doing science?
  • Some places and times in the history of the universe are more habitable than others
  • Those exact places and times also allow us to make scientific discoveries
  • Observing solar eclipses and structure of our star, the Sun
  • Observing stars and galaxies
  • Observing the cosmic microwave background radiation
  • Observing the acceleration of the universe caused by dark matter and energy
  • Observing the abundances of light elements like helium of hydrogen
  • These observations support the big bang and fine-tuning arguments for God’s existence
  • It is exactly like placing observatories on the tops of mountains
  • There are observers existing in the best places to observe things
  • This is EXACTLY how the universe has been designed for making scientific discoveries

This lecture was delivered by Guillermo Gonzalez in 2007 at the University of California at Davis.

What is intelligent design?

Related DVDs

Illustra also made two other great DVDs on intelligent design. The first two DVDs “Unlocking the Mystery of Life” and “The Privileged Planet” are must-buys, but you can watch them on youtube if you want, for free.

Here are the 2 playlists:

I also recommend Coldwater Media’s “Icons of Evolution”. All three of these are on sale from Amazon.com.

Related posts

How long will it take to sort a deck of cards by trial and error?

Inside the cell, things like proteins and DNA are formed by sequencing parts together in just the right way so that the sequence will have biological function. If the sequence is wrong, because some component of the sequence is the wrong piece or is in the wrong place, the sequence has no function. It’s just like writing English or computer instructions.

To calculate the probabilities, you have to use a rule called “The Product Rule”, because the order of the parts in the sequence (“permutation”) is important. For example, the odds of getting the sequence “ABC” just by choosing three random letters is 1/26 x 1/26 x 1/26 = 1/17576. Things get very unlikely quite quickly, don’t they?

So, take a look at Neil Simpson’s latest post, where he uses cards instead of letters or amino acids, but the principle is exactly the same. His calculation is a little different because the odds actually go down a little each time you choose a card. So, for the first card, it’s 1/52, but the second card is only 1/51, and so on…

Excerpt:

This is by no means a definitive argument against evolution, but I offer it to put the “time, chance and random mutation” theory in perspective.

Everyone knows that micro-evolution occurs, such as dog breeding and bacteria becoming resistant to antibiotics.  But macro-evolutionists believe that with enough time an amazingly complex single cell of unknown origin could make lots and lots of small changes, develop reproductive capacities and eventually become humans, elephants, caterpillar/butterflies, chameleons and so much more.

Let’s consider something very simple.  Imagine that you shuffle a deck of cards.  If you shuffled it one time per second, how often would all the cards go back into their original order? (Ace of spades, King of spades, etc.)  The math is simply 1/52 (the odds of the Ace of spades being on top) times 1/51 times 1/50, etc. I left out the Jokers to make it easier.

Guess how many years it takes?

Click through to see his calculations, or do them yourself! It’s easy and fun! Neil has a pretty fun discussion going on with the angry atheists who frequent his site, too.

This is everyone should learn probabilities in school, because then we can really talk about these things with our neighbor. Shalini can even do biochemistry, so she can actually explain it even better than I can!

Remember, we are looking for a specific sequence of cards – the sequence that the cards originally came in. In this example, it’s that sequence and that sequence alone that has biological function. The other sequences are just junk – they have no biological function. And most importantly, you don’t get to save any of the cards that are in the right spots because the sequence as a whole has no present function that would allow it to be “saved” for later. You have to re-select all 52 cards each time at random!

A typical protein isn’t made of 52 parts, it’s made of around 200, and there are 80 possible amino acids, not just 26! And in the case of proteins,the vast majority of the possible sequences that you can make won’t have any biological function at all! (And there are many more problems besides, such as chirality, cross reactions, and bonding type). Even if you filled the whole universe with reactants and reacted it all at Planck time, for the entire history of the universe, you still wouldn’t be likely to get even one protein!

You can read more about the origin of life in this post.