New study: evolutionary algorithms fail to produce meaningful change

Apologetics and the progress of science
Apologetics and the progress of science

Dr. Ann Gauger has a short post at Evolution News about a new paper in the peer-reviewed journal BIO-Complexity.

She writes:

Winston Ewert of Biologic Institute has just published a new article in the peer-reviewed journal BIO-Complexity (“Overabundant mutations help potentiate evolution: The effect of biologically realistic mutation rates on computer models of evolution”).

He and his colleagues have been engaged in a series of critiques of evolutionary algorithms for the last several years.

[…]The advantage of these computer simulations is that they can be run many, many times and thus approximate the long time necessary for biological evolution. The disadvantage is that they do not replicate true biological evolutionary processes, but use “analogous” algorithms. Typically these models, such as Ev and Avida, are purported to solve complex problems.

Yet Ewert and his colleagues have shown that in every case the necessary information for the models to find their targets was smuggled in, whether intentionally or not, by the respective programmers.

[…]Ewert shows that even taking the models as they are, when they are tested using realistic scenarios they fail to accomplish their goals. In fact, they accomplish little beyond their starting positions. He determines the reason for this failure — the models can only go as far as one step will take them. They can’t evolve anything that requires two or more mutations, unless mutation rates are unrealistically high.

Here’s the abstract of the new paper:

Various existing computer models of evolution attempt to demonstrate the efficacy of Darwinian evolution by solving simple problems. These typically use per-nucleotide (or nearest analogue) mutation rates orders of magnitude higher than biological rates. This paper compares models using typical rates for genetic algorithms with the same models using a realistic mutation rate. It finds that the models with the realistic mutation rates lose the ability to solve the simple problems. This is shown to be the result of the difficulty of evolving mutations that only provide a benefit in combination with other mutations.

This reminds me of William Dembski’s “No Free Lunch” theorems, which show that you can never get information for free, through simple mechanisms like genetic algorithms. The only proven source of functional information is an intelligent agent.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s